Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 778: 146288, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714834

ABSTRACT

Fine particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) poses adverse impacts on public health and the environment. It is still a great challenge to estimate high-resolution PM2.5 concentrations at moderate scales. The current study calibrated PM2.5 concentrations at a 1 km resolution scale using ground-level monitoring data, Aerosol Optical Depth (AOD), meteorological data, and auxiliary data via Random Forest (RF) model across China in 2017. The three ten-folded cross-validations (CV) methods including sample-based, time-based, and spatial-based validation combined with Coefficient Square (R2), Root-Mean-Square Error (RMSE), and Mean Predictive Error (MPE) have been used for validation at different temporal scales in terms of daily, monthly, heating seasonal, and non-heating seasonal. Finally, the distribution map of PM2.5 concentrations was illustrated based on the RF model. Some findings were achieved. The RF model performed well, with a relatively high sample-based cross-validation R2 of 0.74, a low RMSE of 16.29 µg × m-3, and a small MPE of -0.282 µg × m-3. Meanwhile, the performance of the RF model in inferring the PM2.5 concentrations was well at urban scales except for Chengyu (CY). North China, the CY urban agglomeration, and the northwest of China exhibited relatively high PM2.5 pollution features, especially in the heating season. The robustness of the RF model in the present study outperformed most statistical regression models for calibrating PM2.5 concentrations. The outcomes can supply an up-to-date scientific dataset for epidemiological and air pollutants exposure risk studies across China.

2.
Sci Rep ; 9(1): 19751, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31875049

ABSTRACT

The existing methods have been used the Zenith Total Delay (ZTD) or Precipitable Water Vapor (PWV) derived from Global Navigation Satellite System (GNSS) for rainfall forecasting. However, the occurrence of rainfall is highly related to a myriad of atmospheric parameters, and a good forecast result cannot be obtained if it only depends on a single predictor. This study focused on rainfall forecasting by using a number of atmospheric parameters (such as: temperature, relative humidity, dew temperature, pressure, and PWV) based on the improved Back Propagation Neural Network (BP-NN) algorithm. Results of correlation analysis showed that each meteorological parameter contributed to rainfall. Therefore, a short-term rainfall forecast model was proposed based on an improved BP-NN algorithm by using multiple meteorological parameters. Two GNSS stations and collocated weather stations in Singapore were used to validate the proposed rainfall forecast model by using three years of data (2010-2012). True forecast (TFR), false forecast (FFR), and missed forecast (MFR) rate were introduced as evaluation indices. The experimental result revealed that the proposed model exhibited good performance with TFR larger than 96% and FFR of approximately 40%. The proposed method improved TFR by approximately 10%, whereas FFR was comparable to existing literature. This forecasted result further verified the reliability and practicability of the proposed rainfall forecasting method by using the improved BP-NN algorithm.

3.
Sensors (Basel) ; 19(24)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888304

ABSTRACT

Standardized precipitation evapotranspiration index (SPEI) is an acknowledged drought monitoring index, and the evapotranspiration (ET) used to calculated SPEI is obtained based on the Thornthwaite (TH) model. However, the SPEI calculated based on the TH model is overestimated globally, whereas the more accurate ET derived from the Penman-Monteith (PM) model recommended by the Food and Agriculture Organization of the United Nations is unavailable due to the lack of a large amount of meteorological data at most places. Therefore, how to improve the accuracy of ET calculated by the TH model becomes the focus of this study. Here, a revised TH (RTH) model is proposed using the temperature (T) and precipitable water vapor (PWV) data. The T and PWV data are derived from the reanalysis data and the global navigation satellite system (GNSS) observation, respectively. The initial value of ET for the RTH model is calculated based on the TH model, and the time series of ET residual between the TH and PM models is then obtained. Analyzed results reveal that ET residual is highly correlated with PWV and T, and the correlate coefficient between PWV and ET is -0.66, while that between T and ET for cases of T larger or less than 0 °C are -0.54 and 0.59, respectively. Therefore, a linear model between ET residual and PWV/T is established, and the ET value of the RTH model can be obtained by combining the TH-derived ET and estimated ET residual. Finally, the SPEI calculated based on the RTH model can be obtained and compared with that derived using PM and TH models. Result in the Loess Plateau (LP) region reveals the good performance of the RTH-based SPEI when compared with the TH-based SPEI over the period of 1979-2016. A case analysis in April 2013 over the LP region also indicates the superiority of the RTH-based SPEI at 88 meteorological and 31 GNSS stations when the PM-based SPEI is considered as the reference.

4.
Sensors (Basel) ; 20(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906146

ABSTRACT

The rapid variation of atmospheric water vapor is important for a regional hydrologic cycle and climate change. However, it is rarely investigated in China, due to the lack of a precipitable water vapor (PWV) dataset with high temporal resolution. Therefore, this study focuses on the generation of an hourly PWV dataset using Global Navigation Satellite System (GNSS) observations derived from the Crustal Movement Observation Network of China. The zenith total delay parameters estimated by GAMIT/GLOBK software are used and validated with an average root mean square (RMS) error of 4-5 mm. The pressure (P) and temperature (T) parameters used to calculate the zenith hydrostatic delay (ZHD) and weighted average temperature of atmospheric water vapor (Tm) are derived from the fifth-generation reanalysis dataset of the European Centre for Medium-Range Weather Forecasting (ECMWF ERA5) products. The values of P and T at the GNSS stations are obtained by interpolation in the horizontal and vertical directions using empirical formulas. Tm is calculated at the GNSS stations using the improved global pressure and temperature 2 wet (IGPT2w) model in China with an RMS of 3.32 K. The interpolated P and T are validated by interpolating the grid-based ERA5 data into radiosonde stations. The average RMS and bias of P and T in China are 2.71/-1.11 hPa and 1.88/-0.51 K, respectively. Therefore, the error in PWV with a theoretical RMS of 1.85 mm over the period of 2011-2017 in China can be obtained. Finally, the hourly PWV dataset in China is generated and the practical accuracy of the generated PWV dataset is validated using the corresponding AERONET and radiosonde data at specific stations. Numerical results reveal that the average RMS values of the PWV dataset in the four geographical regions of China are less than 3 mm. A case analysis of the PWV diurnal variations as a response to the EI Niño event of 2015-2016 is performed. Results indicate the capability of the hourly PWV dataset of monitoring the rapid water vapor changes in China.

5.
Sci Rep ; 8(1): 7939, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29786065

ABSTRACT

GPS-based Zenith Tropospheric Delay (ZTD) estimation should be easily obtained in a cost-effective way, however, the most previous studies focus on post-processed ZTD estimates using satellite orbit and clock products with at least 3-9 hours latency provided by International GNSS Service (IGS), which limits the GNSS meteorological application for nowcasting. With the development of IGS's real-time pilot project (RTPP), this limitation was removed by April, 2013 as real-time satellite orbit and clock products can be obtained on-line. In this paper, on the one hand, the GPS-derived ZTD estimation was evaluated using the IGS final and real-time satellite products based on independently developed PPP software. On the other hand, the analysis of the time series of GPS-derived ZTD by least-square fitting of a broken line tendency for a full year of observations, and a forecasting method for precipitation is proposed based on the ZTD slope in the ascending period. The agreement between ZTD slope and the ground rainfall records suggested that the proposed method is useful for the assisted forecasting, especially for short-term alarms.

SELECTION OF CITATIONS
SEARCH DETAIL
...