Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(2): 795-806, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835839

ABSTRACT

We show that a thin film of a three-dimensional topological insulator such as Bi(2)Se(3)or Bi(2)Te(3) can exhibit strong linear and nonlinear magneto-optical effects in a transverse magnetic field. In particular, one can achieve an almost complete circular polarization of an incident terahertz or mid-infrared radiation and an efficient four-wave mixing.

2.
Phys Rev Lett ; 112(5): 055501, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24580608

ABSTRACT

Surface plasmons in graphene may provide an attractive alternative to noble-metal plasmons due to their tighter confinement, peculiar dispersion, and longer propagation distance. We present theoretical studies of the nonlinear difference frequency generation (DFG) of terahertz surface plasmon modes supported by two-dimensional layers of massless Dirac electrons, which includes graphene and surface states in topological insulators. Our results demonstrate strong enhancement of the DFG efficiency near the plasmon resonance and the feasibility of phase-matched nonlinear generation of plasmons over a broad range of frequencies.

3.
J Phys Condens Matter ; 25(5): 054203, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23441327

ABSTRACT

Graphene placed in a magnetic field possesses an extremely high mid/far-infrared optical nonlinearity originating from its unusual band structure and selection rules for the optical transitions near the Dirac point. Here, we study the linear and nonlinear optical response of graphene in strong magnetic and optical fields using a quantum-mechanical density-matrix formalism. We calculate the power of the coherent terahertz radiation generated as a result of the four-wave mixing in graphene. We show that even one monolayer of graphene gives rise to an appreciable nonlinear frequency conversion efficiency and Raman gain for modest intensities of the incident infrared radiation.

4.
Phys Rev Lett ; 110(7): 077404, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166408

ABSTRACT

Entangled photon states attract tremendous interest as the most vivid manifestation of nonlocality of quantum mechanics and also for emerging applications in quantum information. Here we propose a mechanism of generation of polarization-entangled photons, which is based on the nonlinear optical interaction (four-wave mixing) in graphene placed in a magnetic field. Unique properties of quantized electron states in a magnetized graphene and optical selection rules near the Dirac point give rise to a giant optical nonlinearity and a high rate of photon production in the mid- or far-infrared range. A similar mechanism of photon entanglement may exist in topological insulators where the surface states have a Dirac-cone dispersion and demonstrate similar properties of magneto-optical absorption.

5.
Phys Rev Lett ; 108(25): 255503, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004619

ABSTRACT

We calculate the nonlinear optical response of graphene in strong magnetic and optical fields, using a quantum-mechanical density-matrix formalism. We show that graphene in a magnetic field possesses a giant mid- or far-infrared optical nonlinearity, perhaps the highest among known materials. The high nonlinearity originates from unique electronic properties and selection rules near the Dirac point. As a result, even one monolayer of graphene gives rise to an appreciable nonlinear frequency conversion efficiency for incident infrared radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...