Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Neuron ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39019040

ABSTRACT

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

2.
J Med Microbiol ; 73(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38506717

ABSTRACT

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Retrospective Studies , High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis/genetics , Brain
3.
Microbiol Spectr ; 12(4): e0347423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38385739

ABSTRACT

The microbiota of perianal abscesses is scarcely investigated. Identifying causative bacteria is essential to develop antibiotic therapy. However, culture-based methods and molecular diagnostics through 16S PCR technology are often hampered by the polymicrobial nature of perianal abscesses. We sought to characterize the microbiota composition of perianal abscesses via metagenomic next-generation sequencing (mNGS). Fourteen patients suffering from perianal abscesses between March 2023 and August 2023 underwent retrospective assessment. Information from medical records was used, including clinical information, laboratory data, and culture and mNGS results. Forty bacterial taxa were identified from perianal abscesses through mNGS, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) representing the most prevalent species. mNGS identified an increased number of bacterial taxa, with an average of 6.1 compared to a traditional culture-based method which only detected an average of 1.1 in culture-positive perianal abscess patients, predominantly E. coli (75.0%), revealing the polymicrobial nature of perianal abscesses. Our study demonstrates that a more diverse bacterial profile is detected by mNGS in perianal abscesses, and that Bilophila wadsworthia is the most prevalent microorganism, potentially serving as a potential biomarker for perianal abscess.IMPORTANCEAccurately, identifying the bacteria causing perianal abscesses is crucial for effective antibiotic therapy. However, traditional culture-based methods and 16S PCR technology often struggle with the polymicrobial nature of these abscesses. This study employed metagenomic next-generation sequencing (mNGS) to comprehensively analyze the microbiota composition. Results revealed 40 bacterial taxa, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) being the most prevalent species. Compared to the culture-based approach, mNGS detected a significantly higher number of bacterial taxa (average 6.1 vs 1.1), highlighting the complex nature of perianal abscesses. Notably, Bilophila wadsworthia emerged as a potential biomarker for these abscesses. This research emphasizes the importance of mNGS in understanding perianal abscesses and suggests its potential for improving diagnostic accuracy and guiding targeted antibiotic therapy in the future.


Subject(s)
Microbiota , Skin Diseases , Adult , Humans , Abscess/diagnosis , Escherichia coli/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing , Anti-Bacterial Agents , Bacteroides fragilis/genetics , Metagenomics , Biomarkers
4.
Microbiol Spectr ; 12(1): e0224623, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38047697

ABSTRACT

IMPORTANCE: Tuberculous meningitis is a life-threatening infection with high mortality and disability rates. Current diagnostic methods using cerebrospinal fluid (CSF) samples have limited sensitivity and lack predictive biomarkers for evaluating prognosis. This study's findings reveal excessive activation of the immune response during tuberculous meningitis (TBM) infection. Notably, a strong negative correlation was observed between CSF levels of monokine induced by interferon-γ (MIG) and the CSF/blood glucose ratio in TBM patients. MIG also exhibited the highest area under the curve with high sensitivity and specificity. This study suggests that MIG may serve as a novel biomarker for differentiating TBM infection in CSF or serum, potentially leading to improved diagnostic accuracy and better patient outcomes.


Subject(s)
Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , ROC Curve , Interferon-gamma , Serum , Biomarkers , Cerebrospinal Fluid
5.
J Infect Chemother ; 30(6): 544-547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-37992864

ABSTRACT

Streptococcus suis is a pathogen of emerging zoonotic diseases and meningoencephalitis is the most frequent clinical symptom of S. suis infection in humans. Rapid diagnosis of S. suis meningoencephalitis is critical for the treatment of the disease. While the current routine microbiological tests including bacterial culture and gram staining are poorly sensitive, diagnosis of S. suis meningoencephalitis by metagenomic next-generation sequencing (mNGS) has been rarely reported. Here, we report a 52-year-old female pork food producer with a broken finger developed S. suis meningoencephalitis. After her admission, no pathogenic bacteria were detected through bacterial culture and Gram staining microscopy in the cerebrospinal fluid obtained via lumbar puncture. However, mNGS identified the presence of S. suis in the sample. mNGS is a promising diagnostic tool for rapid diagnosis of rare infectious diseases in the central nervous system.

6.
Cell Discov ; 8(1): 128, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36443312

ABSTRACT

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.

7.
Mol Brain ; 15(1): 65, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35870928

ABSTRACT

Primary familial brain calcification (PFBC) is a neurogenetic disorder characterized by bilateral calcified deposits in the brain. We previously identified that MYORG as the first pathogenic gene for autosomal recessive PFBC, and established a Myorg-KO mouse model. However, Myorg-KO mice developed brain calcifications until nine months of age, which limits their utility as a facile PFBC model system. Hence, whether there is another typical animal model for mimicking PFBC phenotypes in an early stage still remained unknown. In this study, we profiled the mRNA expression pattern of myorg in zebrafish, and used a morpholino-mediated blocking strategy to knockdown myorg mRNA at splicing and translation initiation levels. We observed multiple calcifications throughout the brain by calcein staining at 2-4 days post-fertilization in myorg-deficient zebrafish, and rescued the calcification phenotype by replenishing myorg cDNA. Overall, we built a novel model for PFBC via knockdown of myorg by antisense oligonucleotides in zebrafish, which could shorten the observation period and replenish the Myorg-KO mouse model phenotype in mechanistic and therapeutic studies.


Subject(s)
Brain Diseases , Calcinosis , Neurodegenerative Diseases , Animals , Brain/metabolism , Brain Diseases/genetics , Calcinosis/genetics , Calcinosis/metabolism , Calcinosis/pathology , Mice , Mutation , Neurodegenerative Diseases/metabolism , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish/genetics
8.
J Mol Med (Berl) ; 100(3): 385-394, 2022 03.
Article in English | MEDLINE | ID: mdl-34837498

ABSTRACT

Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.


Subject(s)
Nervous System Diseases , Oligonucleotides, Antisense , Genetic Therapy/methods , Genetic Vectors/genetics , Humans , Nervous System Diseases/genetics , Nervous System Diseases/therapy , RNA Interference
9.
Front Genet ; 12: 732389, 2021.
Article in English | MEDLINE | ID: mdl-34745211

ABSTRACT

Primary familial brain calcification (PFBC) is a progressive neurological disorder manifesting as bilateral brain calcifications in CT scan with symptoms as parkinsonism, dystonia, ataxia, psychiatric symptoms, etc. Recently, pathogenic variants in MYORG have been linked to autosomal recessive PFBC. This study aims to elucidate the mutational and clinical spectrum of MYORG mutations in a large cohort of Chinese PFBC patients with possible autosomal recessive or absent family history. Mutational analyses of MYORG were performed by Sanger sequencing in a cohort of 245 PFBC patients including 21 subjects from 10 families compatible with a possibly autosomal-recessive trait and 224 apparently sporadic cases. In-depth phenotyping and neuroimaging features were investigated in all patients with novel MYORG variants. Two nonsense variants (c.442C > T, p. Q148*; c.972C > A, p. Y324*) and two missense variants (c.1969G>C, p. G657R; c.2033C > G, p. P678R) of MYORG were identified in four sporadic PFBC patients, respectively. These four novel variants were absent in gnomAD, and their amino acid were highly conserved, suggesting these variants have a pathogenic impact. Patients with MYORG variants tend to display a homogeneous clinical spectrum, showing extensive brain calcification and parkinsonism, dysarthria, ataxia, or vertigo. Our findings supported the pathogenic role of MYORG variants in PFBC and identified two pathogenic variants (c.442C > T, c.972C > A), one likely pathogenic variant (c.2033C > G), and one variant of uncertain significance (c.1969G>C), further expanding the genetic and phenotypic spectrum of PFBC-MYORG.

10.
World J Clin Cases ; 9(24): 7169-7174, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34540974

ABSTRACT

BACKGROUND: Idiopathic basal ganglia calcification (IBGC) is a neurodegenerative disease characterized by symmetrical calcification of basal ganglia and other brain region, also known as Fahr's disease. It can be sporadic or familial, and there is no definite etiology at present. With the development of neuroimaging, the number of reports of IBGC has increased in recent years. However, due to its hidden onset, diverse clinical manifestations, and low incidence, it is likely to be misdiagnosed or ignored by potential patients and their family. CASE SUMMARY: We report a case of a 61-year-old man who presented with symptoms of dysphagia and alalia. His computed tomography scan of the brain revealed bilateral symmetric calcifications of basal ganglia, cerebellum, thalamus, and periventricular area. The genetic test showed a new mutation sites of MYORG, c.1438T>G mutation and c.1271_1272 TGGTGCGC insertion mutation. He was finally diagnosed with IBGC. CONCLUSION: It is important to detect MYORG mutation when IBGC is suspected, especially in those without an obvious family history, for better understanding of the underlying mechanism and identifying potential treatments.

11.
J Cachexia Sarcopenia Muscle ; 12(3): 746-768, 2021 06.
Article in English | MEDLINE | ID: mdl-33955709

ABSTRACT

BACKGROUND: Satellite cells (SCs) are critical to skeletal muscle regeneration. Inactivation of SCs is linked to skeletal muscle loss. Transferrin receptor 1 (Tfr1) is associated with muscular dysfunction as muscle-specific deletion of Tfr1 results in growth retardation, metabolic disorder, and lethality, shedding light on the importance of Tfr1 in muscle physiology. However, its physiological function regarding skeletal muscle ageing and regeneration remains unexplored. METHODS: RNA sequencing is applied to skeletal muscles of different ages to identify Tfr1 associated to skeletal muscle ageing. Mice with conditional SC ablation of Tfr1 were generated. Between Tfr1SC/WT and Tfr1SC/KO (n = 6-8 mice per group), cardiotoxin was intramuscularly injected, and transverse abdominal muscle was dissected, weighted, and cryosectioned, followed by immunostaining, haematoxylin and eosin staining, and Masson staining. These phenotypical analyses were followed with functional analysis such as flow cytometry, tread mill, Prussian blue staining, and transmission electron microscopy to identify pathological pathways that contribute to regeneration defects. RESULTS: By comparing gene expression between young (2 weeks old, n = 3) and aged (80 weeks old, n = 3) mice among four types of muscles, we identified that Tfr1 expression is declined in muscles of aged mice (~80% reduction, P < 0.005), so as to its protein level in SCs of aged mice. From in vivo and ex vivo experiments, Tfr1 deletion in SCs results in an irreversible depletion of SCs (~60% reduction, P < 0.005) and cell-autonomous defect in SC proliferation and differentiation, leading to skeletal muscle regeneration impairment, followed by labile iron accumulation, lipogenesis, and decreased Gpx4 and Nrf2 protein levels leading to reactive oxygen species scavenger defects. These abnormal phenomena including iron accumulation, activation of unsaturated fatty acid biosynthesis, and lipid peroxidation are orchestrated with the occurrence of ferroptosis in skeletal muscle. Ferroptosis further exacerbates SC proliferation and skeletal muscle regeneration. Ferrostatin-1, a ferroptosis inhibitor, could not rescue ferroptosis. However, intramuscular administration of lentivirus-expressing Tfr1 could partially reduce labile iron accumulation, decrease lipogenesis, and promote skeletal muscle regeneration. Most importantly, declined Tfr1 but increased Slc39a14 protein level on cellular membrane contributes to labile iron accumulation in skeletal muscle of aged rodents (~80 weeks old), leading to activation of ferroptosis in aged skeletal muscle. This is inhibited by ferrostatin-1 to improve running time (P = 0.0257) and distance (P = 0.0248). CONCLUSIONS: Satellite cell-specific deletion of Tfr1 impairs skeletal muscle regeneration with activation of ferroptosis. This phenomenon is recapitulated in skeletal muscle of aged rodents and human sarcopenia. Our study provides mechanistic information for developing novel therapeutic strategies against muscular ageing and diseases.


Subject(s)
Cation Transport Proteins , Ferroptosis , Animals , Mice , Muscle, Skeletal , Myoblasts , Receptors, Transferrin/genetics , Regeneration
12.
J Agric Food Chem ; 69(8): 2564-2575, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33599498

ABSTRACT

The number and distribution of adipocytes directly affect the quality of livestock meat products. The analysis of the adipogenesis mechanism is the basis for improving meat quality. The formation of adipocytes is regulated by many factors, including a class of endogenous small RNAs, named microRNA (miRNA). Previous studies have shown that miRNAs could affect adipogenesis by post-transcriptional regulation of target genes. In our study, a decreased miR-99b-5p expression level was found in the adipose tissue of obese mice. Overexpression of miR-99b-5p could increase cell proliferation by promoting the cell cycle while inhibiting cell differentiation. In addition, interference with miR-99b-5p obtained the opposite result. Furthermore, the proteomics sequencing analysis screened 1154 differentially expressed proteins, which are closely related to adipocyte differentiation and fatty acid metabolism. In addition, the results of the dual-luciferase test showed that miR-99b-5p can directly target the proteins SCD1 and Lpin1 with significantly different expression levels in proteomic sequencing. Then, this result was verified at the level of mRNA and protein in a further study. Collectively, these results suggested that miR-99b-5p may be a target for improving meat quality.


Subject(s)
Adipogenesis , MicroRNAs , 3T3-L1 Cells , Adipocytes , Adipogenesis/genetics , Animals , Cell Differentiation , Mice , MicroRNAs/genetics , Phosphatidate Phosphatase , Proteomics , Stearoyl-CoA Desaturase
13.
Biochem Biophys Res Commun ; 527(2): 574-580, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32423805

ABSTRACT

Adipogenesis, a differentiation process that transitions preadipocytes to adipocytes, is key to understanding the biology of fat accumulation and obesity. During this process, there many crucial transcription factors, such as PPARγ and the C/EBP family. Here we show a transcription factor in preadipocytes --- Sox5, that has a function in porcine adipogenesis. In our porcine subcutaneous-derived preadipocyte differentiation model, we found Sox5 expression displayed a significant upregulation after initial induction and decreased afterwards, which resembles the PPARγ expression pattern. siRNA knockdown of Sox5 in porcine preadipocytes significantly promoted cell growth and accelerated cell cycle progression. After inducing differentiation, knockdown of Sox5 notably down-regulated the expression of adipogenic marker genes: PPARγ, aP2, FAS and impaired lipid accumulation. Mechanistically, the deletion of Sox5 down-regulated the BMP R-Smads signal pathway, a crucial signal pathway for controlling preadipocyte fate commitment and adipogenesis. After using BMP4 recombinant protein to activate the BMP R-Smads signal, Sox5 function was partially rescued. In conclusion, our findings uncovered a function of Sox5 in porcine adipogenesis and reveal an interaction between Sox5 and BMP signaling.


Subject(s)
Adipogenesis , Bone Morphogenetic Proteins/metabolism , SOXD Transcription Factors/genetics , Signal Transduction , Smad Proteins/metabolism , Swine/physiology , Animals , Bone Morphogenetic Proteins/genetics , Cells, Cultured , Down-Regulation , RNA Interference , SOXD Transcription Factors/metabolism , Smad Proteins/genetics , Swine/genetics , Up-Regulation
14.
J Agric Food Chem ; 67(51): 14048-14055, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31791125

ABSTRACT

Chemical residues in the environment are considered to be important factors that cause obesity. Bifenthrin is one of the pyrethroid pesticides and is widely used worldwide. However, its effect on adipose tissue is ill-defined. Here, we administered bifenthrin/corn oil to adult C57BL/6 mice by gavage. After 6 weeks, the bifenthrin treatment significantly increased their body weight (P = 0.015) and fat mass (P < 0.001). Then we identified 246 differently expressed proteins by proteomic analysis, and they were highly involved in fatty acid uptake and lipid metabolism processes. Interestingly, protein hormone-sensitive lipase and adipose triacylglyceride lipase were downregulated while lipoprotein lipase is upregulated after bifenthrin treatment. Similar effects in 3T3-L1 cells treated with bifenthrin validated the in vivo results. Thus, this study suggests that long-term exposure to low-dose bifenthrin induces fat deposition in mice by improving fatty acid uptake and inhibiting lipolysis, and it may cause obesity in humans.


Subject(s)
Fatty Acids/metabolism , Lipolysis/drug effects , Obesity/metabolism , Pesticides/adverse effects , Pyrethrins/adverse effects , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Female , Humans , Lipase/genetics , Lipase/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/physiopathology , Pesticides/metabolism , Pyrethrins/metabolism , Sterol Esterase/genetics , Sterol Esterase/metabolism
15.
Biochem Biophys Res Commun ; 513(3): 573-581, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-30981499

ABSTRACT

Myogenic differentiation is precisely regulated with a cascade of genes and pathways. The previous study has demonstrated the muscle-specific deletion of Nr4a1 impairs muscle growth. However, it is still unclear whether muscular Nr4a1 deletion may directly impact myoblast physiology. Here, the present study delves into the molecular mechanism of Nr4a1 in C2C12. Through the analysis of RNAseq and microarray data, Nr4a1 was identified to highly correlate with the expression of myogenic factors. In C2C12, except confirming the induction of Nr4a1 mRNA and protein levels upon the initiation of differentiation, we observed a novel shuttling phenomenon of Nr4a1 from nucleus to cytoplasm in myoblast with a higher expression of MyoD or differentiated myotubes. Furthermore, Nr4a1 overexpression in C2C12 accelerates myoblasts' differentiation and increases myoblast fusion. In contrast, ablation of Nr4a1 expression in C2C12 inhibits the differentiation and fusion process. Meanwhile, in quiescent satellite cells, Nr4a1 expressed is not detected, while its protein level is highly induced in both BaCl2-induced muscle regeneration followed with satellite cells activation and satellite cells of cultured single myofiber. The mechanism may be through the Nr4a1-mediated expression of myogenic factors, e.g. MyoD and MyoG. In summary, the current investigation demonstrates that Nr4a1 is an essential myogenic factor involved in myoblast differentiation.


Subject(s)
Muscle Development , Myoblasts, Skeletal/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/biosynthesis , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Line , Cell Proliferation , Mice, Inbred C57BL , Muscle Development/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , RNA, Messenger/biosynthesis , Up-Regulation
16.
Clin Genet ; 96(1): 53-60, 2019 07.
Article in English | MEDLINE | ID: mdl-30891739

ABSTRACT

Primary familial brain calcification (PFBC) is a rare neurological disorder. Mutations in five genes (SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG) have been linked to PFBC. Here, we used SYBR green-based real-time quantitative polymerase chain reaction (PCR) assay and denaturing high-performance liquid chromatography analysis to detect copy number variants (CNVs) in 20 unrelated patients with PFBC, negatively sequenced for the five known genes. We identified three deletions in SLC20A2, including a large de novo full gene deletion and two exonic deletions confined to exon 2 and exon 6, respectively. Subsequent linked-read whole-genome sequencing of the patient with the large deletion showed a 1.7 Mb heterozygous deletion which removed the entire coding regions of SLC20A2 as well as 21 other genes. In the family with a deletion of exon 6, a missense variant of uncertain significance (SLC20A2: p.E267Q) also co-segregated with the disease. Functional assay showed the deletion could result in significantly impaired phosphate transport, whereas the p.E267Q variant did not. Our results confirm that deletion in SLC20A2 is a causal mechanism for PFBC and highlight the importance of functional study for classifying a rare missense variant as (likely) pathogenic.


Subject(s)
Basal Ganglia Diseases/diagnosis , Basal Ganglia Diseases/genetics , Calcinosis/diagnosis , Calcinosis/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Sequence Deletion , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Adolescent , Adult , Aged , Alleles , Child , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Microsatellite Repeats , Middle Aged , Pedigree , Phenotype , Sequence Analysis, DNA , Xenotropic and Polytropic Retrovirus Receptor , Young Adult
17.
Hum Mutat ; 40(4): 392-403, 2019 04.
Article in English | MEDLINE | ID: mdl-30609140

ABSTRACT

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder with four causative genes (SLC20A2, PDGFRB, PDGFB, and XPR1) that have been identified. Here, we aim to describe the mutational spectrum of four causative genes in a series of 226 unrelated Chinese PFBC patients. Mutations in four causative genes were detected in 16.8% (38/226) of PFBC patients. SLC20A2 mutations accounted for 14.2% (32/226) of all patients. Mutations in the other three genes were relatively rare, accounting for 0.9% (2/226) of all patients, respectively. Clinically, 44.8% of genetically confirmed patients (probands and relatives) were considered symptomatic. The most frequent symptoms were chronic headache, followed by movement disorders and vertigo. Moreover, the total calcification score was significantly higher in the symptomatic group compared to the asymptomatic group. Functionally, we observed impaired phosphate transport induced by seven novel missense mutations in SLC20A2 and two novel mutations in XPR1. The mutation p.D164Y in XPR1 might result in low protein expression through an enhanced proteasome pathway. In conclusion, our study further confirms that mutations in SLC20A2 are the major cause of PFBC and provides additional evidence for the crucial roles of phosphate transport impairment in the pathogenies of PFBC.


Subject(s)
Brain Diseases/genetics , Calcinosis/genetics , Genetic Predisposition to Disease , Mutation , Neurodegenerative Diseases/genetics , Adult , Aged , Alleles , Biological Transport , Biomarkers , Brain Diseases/diagnosis , Brain Diseases/metabolism , Calcinosis/diagnosis , Calcinosis/metabolism , Cell Line, Tumor , China , Female , Genes, sis , Genotype , Humans , Male , Middle Aged , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Neuroimaging , Phenotype , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Tomography, X-Ray Computed , Xenotropic and Polytropic Retrovirus Receptor
18.
Bio Protoc ; 9(14): e3313, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-33654822

ABSTRACT

Myofiber isolation followed with ex vivo culture could recapitulate and visualize satellite cells (SCs) activation, proliferation, and differentiation. This approach could be taken to understand the physiology of satellite cells and the molecular mechanism of regulatory factors, in terms of the involvement of intrinsic factors over SCs quiescence, activation, proliferation and differentiation. Single myofiber culture has several advantages that the traditional approach such as FASC and cryosection could not compete with. For example, myofiber isolation and culture could be used to observe SCs activation, proliferation and differentiation at a continuous manner within their physiological "niche" environment while FACS or cryosection could only capture single time-point upon external stimulation to activate satellite cells by BaCl2, Cardiotoxin or ischemia. Furthermore, in vitro transfection with siRNA or overexpression vector could be performed under ex vivo culture to understand the detailed molecular function of a specific gene on SCs physiology. With these advantages, the physiological state of SCs could be analyzed at multiple designated time-points by immunofluorescence staining. In this protocol, we provide an efficient and practical protocol to isolate single myofiber from EDL muscle, followed with ex vivo culture and immunostaining.

19.
Biochem Biophys Res Commun ; 509(1): 125-132, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30580997

ABSTRACT

Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) gene encodes a transmembrane protein and is involved in multiple physiological and pathological processes, such as inflammatory response, tumor development and progression, cell proliferation and differentiation. A previous study suggested that BAMBI may interact with the Wnt/ß-catenin signaling pathway via promoting ß-catenin nuclear translocation associated with C2C12 myogenic myoblast differentiation. However, its biological function in skeletal muscle still remains unknown and requires further characterization. The present work sought to investigate its biological function in skeletal muscle, especially the physiological roles of BAMBI during skeletal muscle growth and regeneration. Our current work suggests that BAMBI protein is highly expressed in skeletal muscle and is only detected in cytosolic fraction in the resting muscle. Moreover, BAMBI protein is co-localized in fast-twitch (glycolytic) fibers, but not in slow-twitch (oxidative) fibers. Comparing with the cytosolic trapping in resting muscle, BAMBI protein is enriched on cellular membrane during the muscle growth and regeneration, suggesting that BAMBI-mediated a significant signaling pathway may be an essential part of muscle growth and regeneration.


Subject(s)
Membrane Proteins/metabolism , Muscle Development , Muscle, Skeletal/physiology , Regeneration , Animals , Cell Membrane/metabolism , Cytosol/metabolism , Male , Membrane Proteins/analysis , Mice, Inbred C57BL , Muscle, Skeletal/growth & development , Muscle, Skeletal/injuries , Protein Transport
20.
Neuron ; 98(6): 1116-1123.e5, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29910000

ABSTRACT

Primary familial brain calcification (PFBC) is a genetically heterogeneous disorder characterized by bilateral calcifications in the basal ganglia and other brain regions. The genetic basis of this disorder remains unknown in a significant portion of familial cases. Here, we reported a recessive causal gene, MYORG, for PFBC. Compound heterozygous or homozygous mutations of MYORG co-segregated completely with PFBC in six families, with logarithm of odds (LOD) score of 4.91 at the zero recombination fraction. In mice, Myorg mRNA was expressed specifically in S100ß-positive astrocytes, and knockout of Myorg induced the formation of brain calcification at 9 months of age. Our findings provide strong evidence that loss-of-function mutations of MYORG cause brain calcification in humans and mice.


Subject(s)
Astrocytes/metabolism , Brain Diseases/genetics , Calcinosis/genetics , Glycoside Hydrolases/genetics , Loss of Function Mutation , RNA, Messenger/metabolism , Adult , Aged , Alleles , Animals , Case-Control Studies , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...