Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 25(60): 13683-13687, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31402521

ABSTRACT

The Pd/C catalysts are widely used in synthesis of fine chemicals in industry, but their production suffers from a complicated two-step process involving impregnation and reduction, and requires large amounts of solvents and reductant, which would lead to a series of issues such as time consumption, resource waste and environmental pollution. Herein, ultra-small Pd nanoparticles uniformly anchored on carbon nanotubes (Pd/CNTs) were synthesized by using a one-pot and low-temperature reduction strategy. The present process/technology is very sensitive to and controlled by the supports and solvents, and the carbon support and acetic acid synergistically play crucial and decisive roles in the fast production of Pd/C catalysts. Also, the used solvents can be recycled and reutilized, which meets the requirements of sustainable chemistry and green economy. When the as-obtained Pd/CNTs catalyst was used to catalyze the oxidation of benzyl alcohol to benzaldehyde, it achieved a conversion efficiency as high as 99.3 % and a high selectivity up to >99.9 %. The simple, scalable and environmentally friendly strategy can be extended to anchor Pd nanoparticles on various carbon substrates, which sheds a new light on the synthesis of Pd/C catalysts.

2.
ACS Appl Mater Interfaces ; 11(10): 9904-9910, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30773875

ABSTRACT

Electrochemical reduction of carbon dioxide to hydrocarbons, driven by renewable power sources, is a fascinating and clean way to remedy greenhouse gas emission as a result of overdependence on fossil fuels and produce value-added fine chemicals. The Cu-based catalysts feature unique superiorities; nevertheless, achieving high hydrocarbon selectivity is still inhibited and remains a great challenge. In this study, we report on a tailor-made multifunction-coupled Cu-metal-organic framework (Cu-MOF) electrocatalyst by time-resolved controllable restructuration from Cu2O to Cu2O@Cu-MOF. The restructured electrocatalyst features a time-responsive behavior and is equipped with high specific surface area for strong adsorption capacity of CO2 and abundant active sites for high electrocatalysis activity based on the as-produced MOF on the surface of Cu2O, as well as the accelerated charge transfer derived from the Cu2O core in comparison with the Cu-MOF. These intriguing characteristics finally lead to a prominent performance towards hydrocarbons, with a high hydrocarbon Faradaic efficiency (FE) of 79.4%, particularly, the CH4 FE as high as 63.2% (at -1.71 V). This work presents a novel and efficient strategy to configure MOF-based materials in energy and catalysis fields, with a focus on big surface area, high adsorption ability, and much more exposed active sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...