Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(29): eado7826, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028805

ABSTRACT

For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 µm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter-1 for Zn-MnO2 batteries and ~107 Wh liter-1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.

2.
Small Methods ; : e2400408, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949412

ABSTRACT

Adverse side reactions and uncontrolled Zn dendrites growth are the dominant factors that have restricted the application of Zn ion batteries. Herein, a 3D self-supporting porous carbon fibers (denoted as PCFs) host is developed with "trap" effect to adjust the Zn deposition. The unique open structural design of N-doped carbon can act as the zincophilic sites to induce uniform deposition and inhibit adverse side reactions. More importantly, the porous hollow PCFs host with "trap" effect can induce Zn deposition in the fiber by adjusting the local electric field and current density, thereby increasing the specific energy density of the battery and inhibiting dendrite growth. In addition, the 3D open frameworks can regulate Zn2+ flux to enable outstanding cycling performance at ultra-high current densities. As expected, the PCFs framework guarantees the uniform Zn plating and stripping with an outstanding stability over 6000 cycles at the current density of 40 mA cm-2. And the Zn@PCFs||MnO2 full battery shows an excellent lifespan over 1300 cycles at 2000 mA g-1.

3.
Small ; : e2403660, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004850

ABSTRACT

All-solid-state lithium metal batteries (ASSLMBs) have emerged as the most promising next-generation energy storage devices. However, the unsatisfactory ionic conductivity of solid electrolytes at room temperature has impeded the advancement of solid-state batteries. In this work, a multifunctional composite solid electrolyte (CSE) is developed by incorporating boron nitride nanotubes (BNNTs) into polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). BNNTs, with a high aspect ratio, trigger the dissociation of Li salts, thus generating a greater population of mobile Li+, and establishing long-distance Li+ transport pathways. PVDF-HFP/BNNT exhibits a high ionic conductivity of 8.0 × 10-4 S cm-1 at room temperature and a Li+ transference number of 0.60. Moreover, a Li//Li symmetric cell based on PVDF-HFP/BNNT demonstrates robust cyclic performance for 3400 h at a current density of 0.2 mA cm-2. The ASSLMB formed from the assembly of PVDF-HFP/BNNT with LiFePO4 and Li exhibits a capacity retention of 93.2% after 850 cycles at 0.5C and 25 °C. The high-voltage all-solid-state LiCoO2/Li cell based on PVDF-HFP/BNNT also exhibits excellent cyclic performance, maintaining a capacity retention of 96.4% after 400 cycles at 1C and 25 °C. Furthermore, the introduction of BNNTs is shown to enhance the thermal conductivity and flame retardancy of the CSE.

4.
Nano Lett ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054654

ABSTRACT

The inherent properties of boron nitride nanotubes (BNNTs) can be further enhanced through the control of their anisotropy. In particular, horizontally aligned BNNTs (HABNNTs) exhibit considerable potential for various applications. However, directly synthesizing HABNNTs is difficult owing to the random floating of BNNTs and the absence of directional forces. Here, we employed a simple, efficient, and universal "surface-like growth" strategy to synthesize high-density and high-quality HABNNTs in the W2B5/Zn precursor system. First, the floating range of BNNTs was restricted to the vicinity of the precursor, and then, directional forces were applied to induce BNNT directional growth along the substrate surface. Experiments and simulations confirmed that the HABNNT orientation could be controlled through manipulation of the directional forces. Furthermore, the strategy was employed for HABNNTs synthesis using the MoB2/Zn, further demonstrating the universality of the approach. Overall, this work offers a fresh perspective on the synthesis of HABNNTs, further expanding their potential applications.

5.
Adv Mater ; : e2406093, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865651

ABSTRACT

Aqueous Zn-ion batteries featuring with intrinsic safety and low cost are highly desirable for large-scale energy storage, but the unstable Zn-metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self-reconfiguration strategy is developed to generate triple-gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI)-Zn5(OH)8Cl2·H2O-Sn (PT-ZHC-Sn) artificial layer. The resulting triple-gradient interface consists of the spherical top layer PT with cation confinement and H2O inhibition, the dense intermediate layer ZHC nanosheet with Zn2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well-designed triple-gradient artificial interfacial layer synergistically facilitates rapid Zn2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT-ZHC-Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm-2 for 0.5 mAh cm-2. Furthermore, a full battery coupling with MnO2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self-reconfiguration strategy is also applied to prepare triple-gradient PT-ZHC-In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn-metal anodes.

6.
Adv Mater ; 36(21): e2313772, 2024 May.
Article in English | MEDLINE | ID: mdl-38402409

ABSTRACT

Fiber-shaped aqueous zinc-ion batteries (FAZIBs) with intrinsic safety, highcapacity, and superb omnidirectional flexibility hold promise for wearable energy-supply devices. However, the interfacial separation of fiber-shaped electrodes and electrolytes caused by Zinc (Zn) stripping process and severe Zn dendrites occurring at the folded area under bending condition seriously restricts FAZIBs' practical application. Here, an advanced confinement encapsulation strategy is originally reported to construct dual-layer gel electrolyte consisting of high-fluidity polyvinyl alcohol-Zn acetate inner layer and high-strength Zn alginate outer layer for fiber-shaped Zn anode. Benefiting from the synergistic effect of inner-outer gel electrolyte and the formation of solid electrolyte interphase on Zn anode surface by lysine additive, the resulting fiber-shaped Zn-Zn symmetric cell delivers long cycling life over 800 h at 1 mA cm-2 with dynamic bending frequency of 0.1 Hz. The finite element simulation further confirms that dual-layer gel electrolyte can effectively suppress the interfacial separation arising from the Zn stripping and bending process. More importantly, a robust twisted fiber-shaped Zn/zinc hexacyanoferrate battery based on dual-layer gel electrolyte is successfully assembled, achieving a remarkable capacity retention of 97.7% after bending 500 cycles. Therefore, such novel dual-layer gel electrolyte design paves the way for the development of long-life fiber-shaped aqueous metal batteries.

7.
J Phys Chem Lett ; 15(7): 1921-1929, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38345930

ABSTRACT

Chemical vapor deposition (CVD) stands out as the most promising method for cost-effective production of high-quality boron nitride nanotubes (BNNTs). Catalysts play a crucial role in BNNT synthesis. This work delves into the impact of oxygen (O) on Ti-based catalysts during the CVD growth of BNNTs. In contrast to the B/TiB2 nanoparticles (NPs) and B/TiN NPs systems, the oxygen-containing precursor B/TiO2 NPs remarkably catalyzes the growth of high-quality and high-purity BNNTs across a wider range of synthesis parameters. Subsequent analyses reveal that TiBO3 acts as an active catalyst, facilitating BNNT growth in Ti-based catalyst systems. Moreover, the nanocomposite film synthesized from BNNTs and PVDF-HFP exhibits excellent mechanical properties and heat dissipation capabilities. Utilizing the nanocomposite film as a thermal interface material effectively enhances the heat dissipation for a 5 W light-emitting diode (LED) chip. Consequently, our research confirms the effectiveness of the Ti-B-O system in catalyzing BNNT growth.

8.
Adv Mater ; 36(19): e2311082, 2024 May.
Article in English | MEDLINE | ID: mdl-38288858

ABSTRACT

Hydrogel electrolytes (HEs), characterized by intrinsic safety, mechanical stability, and biocompatibility, can promote the development of flexible aqueous zinc-ion batteries (FAZIBs). However, current FAZIB technology is severely restricted by the uncontrollable dendrite growth arising from undesirable reactions between the HEs with sluggish ionic conductivity and Zn metal. To overcome this challenge, this work proposes a molecular engineering strategy, which involves the introduction of oxygen-rich poly(urea-urethane) (OR-PUU) into polyacrylamide (PAM)-based HEs. The OR-PUU/PAM HEs facilitate rapid ion transfer through their ionic hopping migration mechanism, resulting in uniform and orderly Zn2+ deposition. The abundant polar groups on the OR-PUU molecules in OR-PUU/PAM HEs break the inherent H-bond network, tune the solvation structure of hydrated Zn2+, and inhibit the occurrence of side reactions. Moreover, the interaction of hierarchical H-bonds in the OR-PUU/PAM HEs endows them with self-healability, enabling in situ repair of cracks induced by plating/stripping. Consequently, Zn symmetric cells incorporating the novel OR-PUU/PAM HEs exhibit a long cycling life of 2000 h. The resulting Zn-MnO2 battery displays a low capacity decay rate of 0.009% over 2000 cycles at 2000 mA g-1. Overall, this work provides valuable insights to facilitate the realization of dendrite-free Zn-metal anodes through the molecular engineering of HEs.

9.
Small ; 20(1): e2304847, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658511

ABSTRACT

The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2 O3 -CoP heterostructure that combines the dual functions of polar Fe2 O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2 O3 -CoP-based separator provides an astonishing capacity of 1346 mAh g-1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42 mg cm-2 , it shows an area capacity of 5.90 mAh cm-2 . This study provides useful insights into the design of new catalytic materials for Li-S batteries.

10.
Small ; : e2306722, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088588

ABSTRACT

To change the binary structure of nanotube and nanotube array in vertically aligned carbon nanotube arrays, this work deposits regularly arranged amorphous alumina sheets on the classical array growth catalyst (10 nm-thick alumina and 2 nm-thick iron) and obtains an array similar to the Medusa head. Subsequent experiments revealed that these alumina sheets show both unstable and stable qualities during growth: unstable in that they thermally deform and change their newly discovered characteristics of blocking carbon source diffusion, which regulates the nanotube growth order in specific areas; stable in that they withstand the deformation caused by heat and sequential growth of nanotubes, serving as a substrate and buffer layer for Medusa's hair, i.e., nanotube bundles on the array surface. Their combination splits this binary structure into a tertiary architecture consisting of nanotubes, nanotube bundles, and the array spanning nano-, micro-, and milli-meter. Benefiting from this structure, this array exhibits a unique near-isotropic adhesion characteristic compared to existing reports and outperforms classical and patterned arrays with the same classical catalyst and growth conditions.

11.
Article in English | MEDLINE | ID: mdl-38039069

ABSTRACT

Aqueous Zn-ion batteries offer the advantages of greater security and lower fabrication costs over their lithium-ion counterparts. However, their further advancement and practical application are hindered by the drastic decay in their performance due to the uncontrollable dendrite growth on Zn anodes. In this study, we fabricated a versatile three-dimensional (3D) interfacial layer (3D PVDF-Zn(TFO)2 (PVDF: poly(vinylidene fluoride); TFO: trifluoromethanesulfonate), which simultaneously formed porous Zn-metal anodes (PZn) with an enhanced (002) texture, via a in situ etching scheme. The 3D PVDF-Zn(TFO)2@PZn symmetrical cells leverage the advantages of surface coating and 3D porous architectures to yield extra-long cyclic lifetimes of over 5300 h (0.1 mA cm-2). The fabricated anodes were found to be compatible with MnO2 cathodes, and the resulting full batteries delivered an outstanding capacity of 336 mAh g-1 at 0.1 A g-1 and exhibited impressive long-term reversibility with a capacity retention of 78.7% for 2000 cycles. The proposed coating strategy is viable for developing porous structures with cutting-edge designs and for textured surface engineering.

12.
ACS Appl Mater Interfaces ; 15(47): 54886-54897, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37963338

ABSTRACT

Emerging biocomposites with excellent heat dissipation capabilities and inherent sustainability are urgently needed to address the cooling issues of modern electronics and growing environmental concerns. However, the moisture stability, mechanical performance, thermal conductivity, and even flame retardancy of biomass-based materials are generally insufficient for practical thermal management applications. Herein, we present a high-performance graphene biocomposite consisting of carboxylated cellulose nanofibers and graphene nanosheets through an evaporation-induced self-assembly and subsequent Fe3+ cross-linking strategy. The Fe3+ coordination plays a critical role in stabilizing the material structure, thereby improving the mechanical strength and water stability of the biocomposite films, and its effect is revealed by density functional theory calculations. The hierarchical structure of the biocomposite films also leads to a high in-plane thermal conductivity of 42.5 W m-1 K-1, enabling a superior heat transfer performance. Furthermore, the resultant biocomposite films exhibit outstanding Joule heating performance with a fast thermal response and long-term stability, improved thermal stability, and flame retardancy. Therefore, such a general strategy and the desired overall properties of the biocomposite films offer wide application prospects for functional and safe thermal management.

13.
Nanomicro Lett ; 16(1): 17, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975956

ABSTRACT

Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices. However, when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites, capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying, which greatly reduces the thermal conductivity of the composites. Herein, graphene nanosheets/aramid nanofiber (GNS/ANF) composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds and π-π interactions. The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets, thereby creating a fast in-plane heat transfer channel. The composite films (GNS/ANF-60 wt%) with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity (146 W m-1 K-1) and tensile strength (207 MPa). The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones, showing promising applications in the thermal management of high-power electronic devices.

14.
Chem Commun (Camb) ; 59(100): 14819-14822, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38009219

ABSTRACT

Currently, Zn-based catalysts for electrochemical CO2 reduction reactions are limited by their moderate carbophilicity, resulting in low catalytic activity and CO selectivity. To this end, we selected 5-mercapto-1-methylimidazole, a small molecule that possesses the ability to both coordinate to Zn and interact with the intermediates, to modify electrochemically deposited Zn nanosheets. The interaction between them effectively enhances intermediate adsorption by lowering the Gibbs free energy, which leads to an increase of the Faraday efficiency to 1.9 times and the CO partial current density to 3.0 times that of the pristine sample (-1.0 V vs. RHE).

15.
Dalton Trans ; 52(36): 12869-12877, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37622489

ABSTRACT

Aqueous rechargeable zinc ion batteries (ARZIBs) are ideal for massive and longstanding energy storage applications because of their excellent security and low operation cost. Nevertheless, ARZIBs are subject to the severe corrosion reaction of zinc metal anodes that is derived from the thermodynamic unsteadiness of the zinc anodes in aqueous solution, as well as zinc dendrite growth originating from uncontrolled zinc deposition. Herein, we created a separator by coating a thin piece of polypropylene (PP) with a compound consisting of zinc trifluoromethanesulfonate [Zn(OTf)2] and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP). Consequently, the severe corrosion reaction of the zinc metal anodes and the profuse formation of zinc dendrites were effectively mitigated by the novel PP separator, which prolonged the lifetime of the zinc metal anodes. When a zinc metal plating layer was used with preferential (002) crystallographic orientation, the cyclic performance over 1100 h of the symmetrical Zn∥Zn battery based on the novel separator was steady. Additionally, the Zn∥MnO2 batteries exhibited an impressive specific capacity and competitive long durability of 75.5% over 500 cycles at a current density of 0.1 A g-1. With this work, we intend to set the standard for designing novel separators in the construction of advanced zinc anodes for high-performance ARZIBs.

16.
Small ; 19(14): e2206933, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36631285

ABSTRACT

The large-scale synthesis of high-quality boron nitride nanotubes (BNNTs) has attracted considerable interests due to their applications in nanocomposites, thermal management, and so on. Despite decades of development, efficient preparation of high-quality BNNTs, which relies on the effective design of precursors and catalysts and deep insights into the catalytic mechanisms, is still urgently needed. Here, a self-catalytic process is designed to grow high-quality BNNTs using ternary W-B-Li compounds. W-B-Li compounds provide boron source and catalyst for BNNTs growth. High-quality BNNTs are successfully obtained via this approach. Density functional theory-based molecular dynamics (DFT-MD) simulations demonstrate that the Li intercalation into the lattice of W2 B5 promotes the formation of W-B-Li liquid and facilitates the compound evaporation for efficient BNNTs growth. This work demonstrates a high-efficient self-catalytic growth of high-quality BNNTs via ternary W-B-Li compounds, providing a new understanding of high-quality BNNTs growth.

17.
Chem Commun (Camb) ; 58(87): 12216-12219, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36250481

ABSTRACT

We propose an efficient strategy based on the electrospinning technique combined with multi-dimensional fillers to fabricate composites with well-established thermal pathways. A bridge-type structure is constructed in the composite fibers by integrating 1D boron nitride nanofibers and 2D boron nitride nanosheets, which can accelerate the formation of a valid thermal network, thereby the BNNS/BNNF/polyacrylonitrile (bsf) composites perform better than the BNNS/polyacrylonitrile (bs) composites. This strategy can be extended to the preparation of other electrospun 1D/2D nanofiller/polymer composite fiber films.

18.
Small ; 18(50): e2204683, 2022 12.
Article in English | MEDLINE | ID: mdl-36310129

ABSTRACT

Commercialization of aqueous batteries is mainly hampered by their low energy density, owing to the low mass loading of active cathode materials. In this work, a MnO2 cathode structure (MnO2 /CTF) is designed to modify the MnO2 /collector interface for enhanced ion transportation properties. Such a cathode can achieve ultrahigh mass loading of MnO2 , large areal capacity, and high energy density, with excellent cycling stability and rate performance. Specifically, a 0.15 mm thick MnO2 /CTF cathode can realize a mass loading of 20 mg cm-2 with almost 100% electrochemical conversion of MnO2 , providing the maximum areal capacity of 12.08 mA h cm-2 and energy density of 191 W h kg-1 for Zn-MnO2 /CTF batteries when considering both cathode and anode. Besides the conventional low energy demonstrations, such a Zn-MnO2 /CTF battery is capable of realistic applications, such as mobile phones in our daily life, which is a promising alternative for wearable electronics.


Subject(s)
Manganese Compounds , Oxides , Zinc , Electric Power Supplies
19.
Dalton Trans ; 51(44): 17081-17088, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36314276

ABSTRACT

Nowadays, the goal of carbon peaking and carbon neutrality has become a global consensus, and electrochemical CO2 reduction to provide high-value power fuel is one of the major technical approaches attracting significant research interests and application prospects. However, the inevitable hydrogen evolution reaction in water-based electrolyte systems crowds out the reactive sites of active metals, causing a low CO2 conversion efficiency. In this work, Zn nanosheets were prepared via electrodeposition on the surface of carbon paper and then modified with polytetrafluoroethylene (PTFE) to tune the wetting angle of the electrolyte. A CO faradaic efficiency of 90.2% was achieved for Zn NS-8% PTFE (contact angle: 136.8°) at the electrolytic voltage of -1.0 V vs. RHE along with an overall current density of -7.9 mA cm-2. Experimental results and molecular dynamics simulation revealed that PTFE weakened the aggregation of H2O molecules and was more beneficial for capturing and adsorbing CO2 molecules near the electrode surface. The active sites of hydrogen production were transformed into the reaction center for electrocatalytic CO2 reduction due to the hydrophobicity of the electrode, and the accumulation of the local CO2 concentration accelerated the kinetic activity for electrochemical conversion (CO2 to CO). This strategy of tuning the local environment offers an alternative approach for effective electrode manufacturing in liquid electrolytes.

20.
Chem Rev ; 122(11): 10087-10125, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35446541

ABSTRACT

Metal-organic frameworks (MOFs) have recently emerged as ideal electrode materials and precursors for electrochemical energy storage and conversion (EESC) owing to their large specific surface areas, highly tunable porosities, abundant active sites, and diversified choices of metal nodes and organic linkers. Both MOF-based and MOF-derived materials in powder form have been widely investigated in relation to their synthesis methods, structure and morphology controls, and performance advantages in targeted applications. However, to engage them for energy applications, both binders and additives would be required to form postprocessed electrodes, fundamentally eliminating some of the active sites and thus degrading the superior effects of the MOF-based/derived materials. The advancement of freestanding electrodes provides a new promising platform for MOF-based/derived materials in EESC thanks to their apparent merits, including fast electron/charge transmission and seamless contact between active materials and current collectors. Benefiting from the synergistic effect of freestanding structures and MOF-based/derived materials, outstanding electrochemical performance in EESC can be achieved, stimulating the increasing enthusiasm in recent years. This review provides a timely and comprehensive overview on the structural features and fabrication techniques of freestanding MOF-based/derived electrodes. Then, the latest advances in freestanding MOF-based/derived electrodes are summarized from electrochemical energy storage devices to electrocatalysis. Finally, insights into the currently faced challenges and further perspectives on these feasible solutions of freestanding MOF-based/derived electrodes for EESC are discussed, aiming at providing a new set of guidance to promote their further development in scale-up production and commercial applications.


Subject(s)
Metal-Organic Frameworks , Electrodes , Metal-Organic Frameworks/chemistry , Metals
SELECTION OF CITATIONS
SEARCH DETAIL
...