Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37542393

ABSTRACT

Objective: Studies have found that high expression of human Kallistatin (HKS) in adipose tissue can improve obesity and its associated comorbidities, but the underlying mechanism of specific regulation is unclear. Methods: An obesity model was built by injecting 8-week-old C57BL/6 mice (n = 6 mice per group) with Ad.Null and Ad.HKS adenovirus into epididymal adipose tissue and fed with a high-fat diet (HFD). Insulin resistance-related proteins, AKT and IRS1, were detected in the liver, subcutaneous fat, and skeletal muscle by western blotting after one month of HFD. Epididymal adipose tissue was isolated after 24 h for culture, and exosomes were extracted by differential centrifugation. Enzyme-linked immunosorbent assay detected the expression of HKS protein in serum and exosomes. To examine the role of exosomes in AML12 insulin resistance, we used epididymal adipose tissue-derived exosomes or transfected Ad.HKS into mature 3T3L1-derived exosomes to interfere with palmitic acid (PA)-induced mouse AML12 insulin resistance model. GW4869 was used to inhibit exosome biogenesis and release. Results: Our results showed that HFD-induced mice with high expression of HKS in epididymal adipose tissue had slower weight gain, lower serum triglycerides, reduced free fatty acids, and improved liver insulin resistance compared with the Ad.Null group. We also demonstrated that HKS was enriched in epididymal adipose tissue-derived exosomes and released through the exosome pathway. In PA-induced AML12 cells, insulin resistance was alleviated after incubation of the HKS-related exosome; this effect was reversed with GW4869. Conclusion: High expression of HKS in epididymal adipose tissue could lead to its exocrine secretion in the form of exosomes and improve liver insulin resistance by promoting the phosphorylation of AKT. Production of high HKS vesicles might be a possible way to alleviate insulin resistance associated with obesity.

2.
Cell Signal ; 106: 110637, 2023 06.
Article in English | MEDLINE | ID: mdl-36813150

ABSTRACT

OBJECTIVE: Adipose tissue remodeling is a dynamic process that is pathologically expedited in the obese state and is closely related to obesity-associated disease progression. This study aimed to explore the effects of human kallistatin (HKS) on adipose tissue remodeling and obesity-related metabolic disorders in mice fed with a high-fat diet (HFD). METHODS: Adenovirus-mediated HKS cDNA (Ad.HKS) and a blank adenovirus (Ad.Null) were constructed and injected into the epididymal white adipose tissue (eWAT) of 8-weeks-old male C57B/L mice. The mice were fed normal or HFD for 28 days. The body weight and circulating lipids levels were assessed. Intraperitoneal glucose tolerance test (IGTT) and insulin tolerance test (ITT) were also performed. Oil-red O staining was used to assess the extent of lipid deposition in the liver. Immunohistochemistry and HE staining were used to measure HKS expression, adipose tissue morphology, and macrophage infiltration. Western blot and qRT-PCR were used to evaluate the expression of adipose function-related factors. RESULTS: At the end of the experiment, the expression of HKS in the serum and eWAT of the Ad.HKS group was higher than in the Ad.Null group. Furthermore, Ad.HKS mice had lower body weight and decreased serum and liver lipid levels after four weeks of HFD feeding. IGTT and ITT showed that HKS treatment maintained balanced glucose homeostasis. Additionally, inguinal white adipose tissue (iWAT) and eWAT in Ad.HKS mice had a higher number of smaller-size adipocytes and had less macrophage infiltration than Ad.Null group. HKS significantly increased the mRNA levels of adiponectin, vaspin, and eNOS. In contrast, HKS decreased RBP4 and TNFα levels in the adipose tissues. Western blot results showed that local injection of HKS significantly upregulated the protein expressions of SIRT1, p-AMPK, IRS1, p-AKT, and GLUT4 in eWAT. CONCLUSIONS: HKS injection in eWAT improves HFD-induced adipose tissue remodeling and function, thus significantly improving weight gain and dysregulation of glucose and lipid homeostasis in mice.


Subject(s)
Intra-Abdominal Fat , Serpins , Humans , Male , Mice , Animals , Mice, Obese , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Body Weight , Glucose/metabolism , Diet, High-Fat , Lipids , Genetic Therapy , Mice, Inbred C57BL , Retinol-Binding Proteins, Plasma/genetics , Retinol-Binding Proteins, Plasma/metabolism , Serpins/genetics , Serpins/metabolism
3.
Adipocyte ; 12(1): 2169227, 2023 12.
Article in English | MEDLINE | ID: mdl-36654490

ABSTRACT

High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus. Overlapping differentially expressed genes (ODEGs) between normal diet and HFD groups in GSE30247 and GSE167311 were selected to run protein-protein interaction network, GO and KEGG analysis. The hub genes in ODEGs were screened by Cytoscape software and further verified in GSE79434 and obese mouse model. A total of 747 ODEGs (599 up-regulated and 148 down-regulated) were screened, and the GO and KEGG analysis showed that the up-regulated ODEGs were significantly enriched in inflammatory response and extracellular matrix receptor interaction pathways. On the other hand, the down-regulated ODEGs were involved in metabolic pathways; however, there were no significant KEGG pathways. Furthermore, six hub genes, Mki67, Rac2, Itgb2, Emr1, Tyrobp and Csf1r were acquired. These pathways and genes were verified in GSE79434 and VAT of obese mice. This study revealed that HFD induced VAT expansion, inflammation and fibrosis, and the hub genes could be used as therapeutic biomarkers in obesity.


Subject(s)
Diet, High-Fat , Intra-Abdominal Fat , Animals , Mice , Biomarkers/metabolism , Computational Biology , Intra-Abdominal Fat/metabolism , Obesity/genetics , Obesity/metabolism
4.
Nanomedicine ; 47: 102618, 2023 01.
Article in English | MEDLINE | ID: mdl-36270453

ABSTRACT

Ferroptosis plays an important role in ischemia-reperfusion (I/R)-induced cardiac injury and there are many defects in current targeted delivery of miRNAs for the treatment of ferroptosis. We herein report a unique hydrogel (Gel) that can be triggered by a near-infrared-II (NIR-II) light with deep tissue penetration and biocompatible maximum permissible exposure (MPE) value for in situ treatment after I/R. The mir-196c-3p mimic (mimics) and photothermal nanoparticles (BTN) were co-encapsulated in an injectable Gel (mimics + Gel/BTN) with NIR-II light-triggered release. Using 1064 nm light irradiation, local microenvironment photothermal-triggered on-demand noninvasive controllable delivery of miRNA was achieved, aiming to inhibit I/R-induced ferroptosis. Consequently, declined ferroptosis in cardiomyocytes and improved cardiac function, survival rate in rats was achieved through the controlled release of Gel/BTN mimics in I/R model to simultaneously inhibit ferroptosis hub genes NOX4, P53, and LOX expression.


Subject(s)
Reperfusion Injury , Animals , Rats
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166441, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35577178

ABSTRACT

BACKGROUND: Fibrotic remodeling is an essential aspect of heart failure. Human kallistatin (KS, mouse Serpina3c homologs) inhibits fibrosis after myocardial infarction (MI) but the specific underlying mechanism is unknown. METHODS: A total of 40 heart failure patients (HFPs) were enrolled and their plasma KS was measured using ELISA. Serpina3c-/- and C57BL/6 mice were used to construct the MI model. TGF-ß1 or a hypoxic condition was established to interfere with the functioning of cardiac fibroblasts (CFs). RNA-seq was performed to assess the effect of Serpina3c on the transcriptome. FINDINGS: The levels of KS were used as a predictor of readmission among the HFPs. Serpina3c expression decreased in MI hearts and CFs. Serpina3c-/- led to the aggravation of MI fibrosis, and increased the proliferation of CFs. The overexpression of Serpina3c in CFs had the opposite effect. Glycolysis-related genes were significantly increased in Serpina3c-/- group by RNA-seq. Enolase (ENO1), which is a key enzyme in glycolysis, increased most significantly. Inhibition of ENO1 could antagonize the promotion of Serpina3c-/- on the proliferation of CFs. Co-IP was performed to verify the interaction between Serpina3c and Nr4a1. Serpina3c-/- inhibited the acetylation of Nr4a1 and increased the degradation of Nr4a1. Activation of Nr4a1 could negatively regulate the expression of ENO1 and inhibited the proliferation of Serpina3c-/- CFs in Serpina3c-/- MI mice. INTERPRETATION: Serpina3c inhibits the transcriptional activation of ENO1 by regulating the acetylation of Nr4a1, thereby reducing the fibrosis after MI by inhibiting glycolysis. Serpina3c is a potential target for prevention and treatment of heart failure after MI.


Subject(s)
Heart Failure , Myocardial Infarction , Nuclear Receptor Subfamily 4, Group A, Member 1 , Serpins , Animals , Disease Models, Animal , Fibrosis , Glycolysis , Humans , Mice , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Serpins/metabolism
6.
FASEB J ; 36(5): e22316, 2022 05.
Article in English | MEDLINE | ID: mdl-35429042

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a public health challenge and an increasing cause of chronic liver disease worldwide. However, the underlying molecular mechanism remains unclear. The aim of this study was to determine the precise role of serpina3c in the process of NAFLD. Male Apoe-/- /serpina3c-/- double knockout (DKO) and Apoe-/- mice were fed a high-fat diet (HFD) for 12 weeks. Several markers of steatosis and inflammation were evaluated. In vitro cell models induced by palmitic acid (PA) treatment were used to evaluate the beneficial effect of serpina3c on necroptosis and the underlying molecular mechanism. Compared with Apoe-/- mice, DKO mice exhibited a significantly exacerbated hepatic steatosis, increased hepatic triglyceride content and expression of genes involved in lipid metabolism (SREBP1c and SCD1), promoted hepatic inflammation and fibrosis, promoted necroptosis by increasing expression of receptor-interacting protein 3 (RIP3), phosphorylated mixed lineage kinase domain-like (MLKL) and high mobility group box 1 (HMGB1). Notably, serpina3c deficiency increased ß-catenin, Foxo1, and Toll-like receptor 4 (TLR4) protein expression. In vitro , serpina3c knockdown promoted necroptosis and lipid droplet formation under condition of lipotoxicity. However, these phenomena were reversed by the overexpression of serpina3c. Mechanistically, downregulation of serpina3c expression promoted Foxo1 and ß-catenin colocalized in the nucleus under condition of lipotoxicity, consequently upregulating the expression of TLR4. Conversely, disruption of Foxo1-ß/catenin by Foxo1 and ß-catenin inhibitors decreased TLR4 expression and ameliorated hepatic necroptosis in vitro. This study highlights a novel mechanism that serpina3c modulates NAFLD development by inhibiting necroptosis via ß-catenin/Foxo1/TLR4.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Apolipoproteins E/metabolism , Diet, High-Fat/adverse effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Inflammation/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Necroptosis , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , beta Catenin/genetics , beta Catenin/metabolism
7.
World J Diabetes ; 12(2): 124-137, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33594332

ABSTRACT

BACKGROUND: Endothelial dysfunction, a hallmark of diabetes, is a critical and initiating contributor to the pathogenesis of diabetic cardiovascular complications. However, the underlying mechanisms are still not fully understood. Ferroptosis is a newly defined regulated cell death driven by cellular metabolism and iron-dependent lipid peroxidation. Although the involvement of ferroptosis in disease pathogenesis has been shown in cancers and degenerative diseases, the participation of ferroptosis in the pathogenesis of diabetic endothelial dysfunction remains unclear. AIM: To examine the role of ferroptosis in diabetes-induced endothelial dysfunction and the underlying mechanisms. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG), interleukin-1ß (IL-1ß), and ferroptosis inhibitor, and then the cell viability, reactive oxygen species (ROS), and ferroptosis-related marker protein were tested. To further determine whether the p53-xCT (the substrate-specific subunit of system Xc-)-glutathione (GSH) axis is involved in HG and IL-1ß induced ferroptosis, HUVECs were transiently transfected with p53 small interfering ribonucleic acid or NC small interfering ribonucleic acid and then treated with HG and IL-1ß. Cell viability, ROS, and ferroptosis-related marker protein were then assessed. In addition, we detected the xCT and p53 expression in the aorta of db/db mice. RESULTS: It was found that HG and IL-1ß induced ferroptosis in HUVECs, as evidenced by the protective effect of the ferroptosis inhibitors, Deferoxamine and ferrostatin-1, resulting in increased lipid ROS and decreased cell viability. Mechanistically, activation of the p53-xCT-GSH axis induced by HG and IL-1ß enhanced ferroptosis in HUVECs. In addition, a decrease in xCT and the presence of de-endothelialized areas were observed in the aortic endothelium of db/db mice. CONCLUSION: Ferroptosis is involved in endothelial dysfunction and p53-xCT-GSH axis activation plays a crucial role in endothelial cell ferroptosis and endothelial dysfunction.

8.
Clin Sci (Lond) ; 135(3): 447-463, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33458764

ABSTRACT

Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms. Serpina3c is down-regulated during high-fat diet (HFD)-induced atherosclerosis. An Apoe-/-/serpina3c-/--double-knockout mouse model was used to determine the role of serpina3c in atherosclerosis after HFD for 12 weeks. Compared with Apoe-/- mice, the Apoe-/-/serpina3c-/- mice developed more severe atherosclerosis, and the number of VSMCs and macrophages in aortic plaques was significantly increased. The present study revealed serpina3c as a novel thrombin inhibitor that suppressed thrombin activity. In circulating plasma, thrombin activity was high in the Apoe-/-/serpina3c-/- mice, compared with Apoe-/- mice. Immunofluorescence staining showed thrombin and serpina3c colocalization in the liver and aortic cusp. In addition, inhibition of thrombin by dabigatran in serpina3c-/- mice reduced neointima lesion formation due to partial carotid artery ligation. Moreover, an in vitro study confirmed that thrombin activity was also decreased by serpina3c protein, supernatant and cell lysate that overexpressed serpina3c. The results of experiments showed that serpina3c negatively regulated VSMC proliferation in culture. The possible mechanism may involve serpina3c inhibition of ERK1/2 and JNK signaling in thrombin/PAR-1 system-mediated VSMC proliferation. Our results highlight a protective role for serpina3c as a novel thrombin inhibitor in the development of atherosclerosis, with serpina3c conferring protection through the thrombin/PAR-1 system to negatively regulate VSMC proliferation through ERK1/2 and JNK signaling.


Subject(s)
Atherosclerosis/metabolism , Serpins/pharmacology , Thrombin/drug effects , Animals , Antithrombins/pharmacology , Aorta , Apolipoproteins E/deficiency , Atherosclerosis/pathology , Cells, Cultured , Dabigatran/pharmacology , Diet, High-Fat , Male , Mice, Inbred C57BL , Mice, Knockout , Neointima , Plaque, Atherosclerotic/metabolism , Serpins/genetics , Signal Transduction
9.
Cell Signal ; 75: 109745, 2020 11.
Article in English | MEDLINE | ID: mdl-32828866

ABSTRACT

BACKGROUND: Serpina3 is a member of the serine protease inhibitor family and is involved in the inflammatory response. In this study, we investigated the effect of Serpina3c on pancreatic function in hypercholesterolemic mice. METHODS: To investigate the role of Serpina3c in hyperlipidaemia, Serpina3c knockout mice were bred with Apoe-knockout mice (on a C57BL/6 background) to generate heterozygous Serpina3c-Apoe double knockout (Serpina3c+/-/Apoe+/-) mice and were then bred to obtain homozygotes. C57BL/6, Serpina3c-/-, Apoe-/-, and Apoe-/-Serpina3c-/- mice were fed normal chow, and Apoe-/- and Apoe-/-Serpina3c-/- mice were fed a high-fat diet (HFD). After feeding for 3 months, the mice were monitored for body weight, blood glucose, glucose tolerance, and insulin tolerance test (ITT). ELISA and immunohistochemistry were used to detect insulin levels and glucagon expression. Immunohistochemical staining for macrophages in the pancreas was also performed. Western blot analysis was performed on pancreatic tissues to detect the protein levels of insulin-associated molecules, the metalloproteinase MMP2, the tissue inhibitor TIMP2 and components of the JNK-related pathway. RESULTS: Blood glucose levels, glucose tolerance, and ITT were not significantly different among the groups. Serpina3c knockout resulted in blood lipid abnormalities in mice under HFD conditions. Insulin secretion was decreased in Apoe-/-Serpina3c-/- mice compared with Apoe-/- mice under normal chow conditions. In addition, Apoe-/-Serpina3c-/- mice exhibited increased insulin and glucagon secretion and expression after three months of HFD feeding, but insulin secretion was decreased in Apoe-/-Serpina3c-/- mice compared with Apoe-/- mice after the fifth month of HFD feeding. Serpina3c knockout increased MMP2 protein levels, whereas TIMP2 levels in the pancreas were decreased. Furthermore, Serpina3c knockout significantly upregulated the number of macrophages in the pancreas under HFD conditions. The JNK/AKT/FOXO1/PDX-1 axis was found to be involved in Serpina3c-regulated insulin secretion. CONCLUSION: These novel findings show that Serpina3c could play a protective role in insulin secretion partly through the JNK-related pathway under HFD conditions.


Subject(s)
Hypercholesterolemia/metabolism , Insulin/metabolism , MAP Kinase Signaling System , Pancreatic Diseases/metabolism , Serpins/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE
10.
Cardiovasc Drugs Ther ; 31(4): 367-379, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28779372

ABSTRACT

PURPOSE: Enhanced endoplasmic reticulum (ER) stress and down-regulated SERCA2a expression play crucial roles in diabetes. We aimed to verify whether erythropoietin (EPO) attenuates cardiac dysfunction by suppressing ER stress in diabetic rats. METHODS: Forty male SD rats were randomly divided into four groups: control, EPO-treated control, vehicle-treated diabetic, and EPO-treated diabetic groups. The animals in the EPO-treated control and diabetic groups were administered recombinant human EPO (1000 U/kg body weight) once per week for 12 weeks. RT-PCR and Western blotting assays were performed to detect the expression of 78-kDa glucose-regulated protein precursor (GRP78) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA2a). We cultured neonatal rat cardiomyocytes and investigated the protective effects of EPO against high glucose (HG)-induced apoptosis. Intracellular calcium levels were measured through confocal microscopy. RESULTS: We observed increased myocardial GRP78 expression and decreased myocardial SERCA2a expression in diabetic rats. EPO prevented the changes in GRP78, SERCA2a expression and cardiac dysfunction in diabetic rats. The levels of GRP78 protein were significantly reduced in EPO-treated diabetic rats compared with vehicle-treated diabetic rats (GRP78 protein 0.09 ± 0.03 vs. 0.54 ± 0.04, P < 0.01). The levels of the SERCA2a proteins were significantly increased in EPO-treated diabetic rats compared with vehicle-treated diabetic rats (SERCA2a protein 0.60 ± 0.05 vs. 0.13 ± 0.04, P < 0.01). A reduction in apoptosis was observed in the cardiomyocytes treated with 20 U/mL EPO compared with the cardiomyocytes cultured under HG conditions (apoptosis rate 18.9 ± 1.94 vs. 37.9 ± 1.59%, P < 0.01). CONCLUSIONS: This study demonstrates that EPO treatment improved the parameters of cardiac function following HG-induced injury by suppressing ER stress and inducing SERCA2a expression.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/drug therapy , Endoplasmic Reticulum Stress/drug effects , Erythropoietin/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Diabetes Mellitus, Experimental/drug therapy , Endoplasmic Reticulum Chaperone BiP , Erythropoietin/administration & dosage , Glucose/administration & dosage , Heat-Shock Proteins/genetics , Humans , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Recombinant Proteins , Reverse Transcriptase Polymerase Chain Reaction , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
11.
Am J Transl Res ; 7(7): 1214-26, 2015.
Article in English | MEDLINE | ID: mdl-26328006

ABSTRACT

This study determines whether preconditioning (PC) of human endothelial progenitor cells (hEPCs) with bradykinin promotes infarcted myocardium repair via enhanced activation of B2 receptor (B2R)-dependent Akt/eNOS and increased angiogenesis. hEPCs with or without bradykinin preconditioning (BK-PC) were transplanted into a nude mouse model of acute myocardial infarction. Survival of transplanted cells was assessed using DiD-labeled hEPCs. Infarct size, cardiac function, and angiogenesis were measured 10 d after transplantation. Akt, eNOS, and vascular endothelial growth factor (VEGF) expressions in cardiac tissues were detected by western blotting, and NO production was determined using an NO assay kit. The cell migration and tube formation in cultured hEPCs were determined using transwell chamber and matrigel tube formation assays, respectively. The VEGF levels in the cell supernatant were measured using an enzyme-linked immunosorbent assay kit. BK-PC-hEPCs improved cardiac function, decreased infarct size, and promoted neovascularization 10 d following transplantation. PC increased Akt and eNOS phosphorylation, VEGF expression, and NO production in the ischemic myocardium. The effects of BK-PC were abrogated by HOE140 (B2R antagonist) and LY294002 (Akt antagonist). PC increased hEPC migration, tube formation, and VEGF levels in vitro. Activation of B2R-dependent Akt/eNOS phosphorylation by BK-PC promotes hEPC neovascularization and improves cardiac function following transplantation.

12.
Am J Transl Res ; 7(6): 1045-57, 2015.
Article in English | MEDLINE | ID: mdl-26279749

ABSTRACT

This study determines whether preconditioning (PC) of human endothelial progenitor cells (hEPCs) with bradykinin promotes infarcted myocardium repair via enhanced activation of B2 receptor (B2R)-dependent Akt/eNOS and increased angiogenesis. hEPCs with or without bradykinin preconditioning (BK-PC) were transplanted into a nude mouse model of acute myocardial infarction. Survival of transplanted cells was assessed using DiD-labeled hEPCs. Infarct size, cardiac function, and angiogenesis were measured 10 d after transplantation. Akt, eNOS, and vascular endothelial growth factor (VEGF) expressions in cardiac tissues were detected by western blotting, and NO production was determined using an NO assay kit. The cell migration and tube formation in cultured hEPCs were determined using transwell chamber and matrigel tube formation assays, respectively. The VEGF levels in the cell supernatant were measured using an enzyme-linked immunosorbent assay kit. BK-PC-hEPCs improved cardiac function, decreased infarct size, and promoted neovascularization 10 d following transplantation. PC increased Akt and eNOS phosphorylation, VEGF expression, and NO production in the ischemic myocardium. The effects of BK-PC were abrogated by HOE140 (B2R antagonist) and LY294002 (Akt antagonist). PC increased hEPC migration, tube formation, and VEGF levels in vitro. Activation of B2R-dependent Akt/eNOS phosphorylation by BK-PC promotes hEPC neovascularization and improves cardiac function following transplantation.

13.
Mol Imaging Biol ; 17(5): 652-60, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25666291

ABSTRACT

PURPOSE: Activation of the low-density lipoprotein receptor 1 (LOX-1) contributes to pervasive inflammation in early diabetic nephropathy (DN). This study determined the feasibility of anti-LOX-1-ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) for noninvasive detection of inflammatory renal lesions in early DN. PROCEDURES: Anti-mouse LOX-1 antibody was conjugated to polyethyleneglycol-coated USPIOs. In vitro analysis of USPIOs uptake was performed in RAW264.7 macrophages. DN and control mice were imaged by MRI prior to and 24 h after contrast treatment. RESULTS: Anti-LOX-1 USPIOs were selectively taken up by macrophages, and kidney T2* MRI showed a lower signal intensity in the cortex of DN mice after 24 h administration of anti-LOX-1 USPIOs. Positive Perl's staining in DN lesions, indicating the presence of iron oxide, was consistent with immunohistochemistry indicating the presence of LOX-1 and CD68. CONCLUSIONS: This report shows that anti-LOX-1 USPIOs detect LOX-1-enriched inflammatory renal lesions in early DN mice. Our study provides important information for characterizing and monitoring early DN.


Subject(s)
Diabetic Nephropathies/diagnosis , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/therapeutic use , Scavenger Receptors, Class E/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Magnetite Nanoparticles/administration & dosage , Mice
14.
Clin Chim Acta ; 423: 90-8, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23639635

ABSTRACT

BACKGROUND: The impairment of the tissue kallikrein (KLK1)-kinin system (KKS) may result in atheroma development. However, it remains unclear if the KKS correlates with coronary artery disease (CAD). METHODS: KLK1, VEGF and hs-CRP plasma levels were measured in 100 patients newly diagnosed with CAD and 33 CAD-free controls. Patients were followed-up for the incidence of major adverse cardiovascular events (MACE) for 8months to 2y. Gene expression of KLK1, CD105 and CD68 was assessed in human coronary endarterectomy specimens. RESULTS: Patients with CAD and acute coronary syndrome (ACS) had significantly elevated KLK1 levels. In addition, the concentration of hs-CRP was increased in ACS patients. A strong positive correlation between plasma KLK1 and the severity of CAD was also demonstrated, suggesting that high KLK1 levels are an independent predictor for CAD. MACE during follow-up significantly correlated with KLK1 levels in the ACS group. Unstable coronary plaques demonstrated markedly increased KLK1 levels, macrophage infiltration and high microvessel density. Additionally, KLK1 staining primarily colocalized with macrophages. CONCLUSIONS: In the present study, plasma KLK1 levels were a useful predictor for the presence and extent of CAD. More extensive studies are, however, necessary in order to validate these findings.


Subject(s)
Coronary Artery Disease/diagnosis , Coronary Artery Disease/pathology , Tissue Kallikreins/blood , Aged , C-Reactive Protein/analysis , Female , Gene Expression Regulation , Humans , Immunohistochemistry , Macrophages/metabolism , Male , Middle Aged , Reproducibility of Results , Severity of Illness Index , Tissue Kallikreins/genetics , Tissue Kallikreins/metabolism , Vascular Endothelial Growth Factor A/blood
15.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(10): 870-5, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24377895

ABSTRACT

OBJECTIVE: To explore the impact and related mechanisms of stromal cell-derived factor-1α (SDF-1α) on serum deprivation-induced apoptosis of cardiac stem cells (CSCs). METHODS: CSCs were isolated from adult mouse heart tissue and cultured in vitro. Obtained cells were purified using magnetic-activated cell sorting (MACS) with c-kit magnetic beads. C-kit(+)CSCs were divided into five groups: normal control group, serum deprivation group, serum deprivation+SDF-1α group, serum deprivation+SDF-1α+AMD3100 group, serum deprivation+SDF-1α+LY294002 group. Cell apoptosis was assessed using the DeadEnd Colorimetric TUNEL System and flow cytometry analyses with an Annexin V-FITC Apoptosis Detection Kit. The viability of CSCs was assessed by CCK-8. The protein expression of Bcl-2 and phosphorylated Akt were detected by Western blot. The caspase-3 activity was determined using caspase-3 Colorimetric Assay Kit. RESULTS: After magnetic separation, more than 85% of cardiosphere derived cells were positive for c-kit expression. Compared with the normal control group, the apoptosis rate of serum deprivation group was significantly increased[(27.03 ± 0.80)% vs. (1.51 ± 0.54)%, P < 0.01], which could be significantly reduced by SDF-1α in a concentration dependent manner and peak effect was seen with 100 ng/ml SDF-1α[(10.67 ± 1.06)% vs. (27.03 ± 0.80)%, P < 0.01]. The expressions of p-Akt and Bcl-2 were significantly increased and the activity of caspase-3 was significantly decreased in serum deprivation+SDF-1α group compared to serum deprivation group (P < 0.01). Further more, the expression of p-Akt and Bcl-2 were significantly decreased and the activity of caspase-3 was increased in both serum deprivation+SDF-1α+AMD3100 group and serum deprivation+SDF-1α+LY294002 group compared to serum deprivation+SDF-1α group (P < 0.01). CONCLUSIONS: SDF-1α reduces serum deprivation induced CSCs apoptosis via modulating PI3K/Akt signaling pathway.


Subject(s)
Apoptosis/drug effects , Chemokine CXCL12/pharmacology , Myocardium/cytology , Stem Cells/drug effects , Animals , Caspase 3/metabolism , Cells, Cultured , Culture Media/chemistry , Mice , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction
16.
Cardiovasc Diabetol ; 11: 105, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22954171

ABSTRACT

BACKGROUND: Recent studies revealed that erythropoietin (EPO) has tissue-protective effects in the heart by increasing vascular endothelial growth factor (VEGF) expression and attenuating myocardial fibrosis in ischemia models. In this study, we investigated the effect of EPO on ventricular remodeling and blood vessel growth in diabetic rats. METHODS: Male SD rats were randomly divided into 3 groups: control rats, streptozotocin (STZ)-induced diabetic rats, and diabetic rats treated with 1000 U/kg EPO by subcutaneous injection once per week. Twelve weeks later, echocardiography was conducted, and blood samples were collected for counting of peripheral blood endothelial progenitor cells (EPCs). Myocardial tissues were collected, quantitative real-time PCR (RT-PCR) was used to detect the mRNA expression of VEGF and EPO-receptor (EPOR), and Western blotting was used to detect the protein expression of VEGF and EPOR. VEGF, EPOR, transforming growth factor beta (TGF-ß), and CD31 levels in the myocardium were determined by immunohistochemistry. To detect cardiac hypertrophy, immunohistochemistry of collagen type I, collagen type III, and Picrosirius Red staining were performed, and cardiomyocyte cross-sectional area was measured. RESULTS: After 12 weeks STZ injection, blood glucose increased significantly and remained consistently elevated. EPO treatment significantly improved cardiac contractility and reduced diastolic dysfunction. Rats receiving the EPO injection showed a significant increase in circulating EPCs (27.85 ± 3.43%, P < 0.01) compared with diabetic untreated animals. EPO injection significantly increased capillary density as well as EPOR and VEGF expression in left ventricular myocardial tissue from diabetic rats. Moreover, EPO inhibited interstitial collagen deposition and reduced TGF-ß expression. CONCLUSIONS: Treatment with EPO protects cardiac tissue in diabetic animals by increasing VEGF and EPOR expression levels, leading to improved revascularization and the inhibition of cardiac fibrosis.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Erythropoietin/pharmacology , Hypertrophy, Left Ventricular/prevention & control , Myocardium/pathology , Neovascularization, Physiologic/drug effects , Ventricular Dysfunction, Left/prevention & control , Ventricular Remodeling/drug effects , Animals , Blotting, Western , Collagen Type I/metabolism , Collagen Type III/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Erythropoietin/administration & dosage , Fibrosis , Gene Expression Regulation , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Immunohistochemistry , Injections, Subcutaneous , Male , Myocardial Contraction/drug effects , Myocardium/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Recovery of Function , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Time Factors , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left/drug effects
17.
Cardiovasc Pathol ; 21(2): 112-9, 2012.
Article in English | MEDLINE | ID: mdl-21652224

ABSTRACT

AIMS: The objective of this study was to noninvasively measure the volume of myocardial infarction in rats, using delayed enhancement magnetic resonance imaging (MRI) in a coronary occlusion/reperfusion model on a 7-T scanner. METHODS: At 24 h after cardiac ischemia, contrast-enhanced MRI was performed. Two distinct experimental groups were compared: one was subjected to permanent ischemia (PL) and the other was subjected to 30 min of ischemia followed by 24 h of reperfusion (IR). The sizes of enhanced regions were compared to triphenyltetrazolium chloride (TTC)-stained sections of the excised rat heart. Cardiomyocyte apoptosis was analyzed by TUNEL methods, and neutrophils and macrophages were quantitated after histology and immunohistochemical staining. RESULTS: Twenty-four hours after ischemia, delayed hyperenhancement imaging was clearly visualized in the anterior left ventricular walls corresponding to the infarcted myocardium. In the PL group, infarct size was 37.2±9.8% (LV %) as measured by MRI and 38.8±9% (LV %) by TTC (P=NS). In the IR group, infarct size was 23.2±8.8% (LV %) as measured by MRI and 24.4±9.2% (LV %) by TTC (P=NS). Infarction volume measured with MRI was strongly correlated to TTC staining (R=0.82 for PL, R=0.973 for IR). Increased inflammatory cell infiltration was detected in the infarct area of the heart after reperfusion compared to permanent ligation (P<.01). The ratio of TUNEL-positive cardiomyocytes to total number of cardiomyocytes in the IR group was significantly reduced as compared to the PL group (P<.01). CONCLUSIONS: MRI can accurately assess infarct size in intact rats early after MI. After transient arterial occlusion, the size of the myocardial infarct was found to be significantly smaller as compared to permanent occlusion.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Myocardial Infarction/diagnosis , Animals , Apoptosis , Cell Count , Coloring Agents/chemistry , Contrast Media , Disease Models, Animal , Gadolinium , In Situ Nick-End Labeling , Myocardial Infarction/physiopathology , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocardium/chemistry , Myocardium/pathology , Myocytes, Cardiac/pathology , Rats , Reproducibility of Results , Tetrazolium Salts/chemistry
18.
Chin Med J (Engl) ; 124(3): 401-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21362341

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) transplantation may partially restore heart function in the treatment of acute myocardial infarction (AMI). The aim of this study was to explore the beneficial effects of MSCs modified with heme xygenase-1 (HO-1) on post-infarct swine hearts to determine whether the induction of therapeutic angiogenesis is modified by the angiogenic cytokines released from the implanted cells. METHODS: In vitro, MSCs were divided into four groups: (1) non-transfected MSCs (MSCs group), (2) MSCs transfected with the pcDNA3.1-Lacz plasmid (Lacz-MSCs group), (3) MSCs transfected with pcDNA3.1-hHO-1 (HO-1-MSCs group), and (4) MSCs transfected with pcDNA3.1-hHO-1 and pretreatment with an HO inhibitor, tin protoporphyrin (SnPP) (HO-1-MSCs + SnPP group). Cells were cultured in an airtight incubation bottle for 24 hours, in which the oxygen concentration was maintained at < 1%, followed by 12 hours of reoxygenation. After hypoxia/reoxygen treatment, ELISA was used to measure transforming growth factor (TGF-ß) and fibroblast growth factor (FGF-2) in the supernatant. In vivo, 28 Chinese mini-pigs were randomly allocated to the following treatment groups: (1) control group (saline), (2) Lacz-MSCs group, (3) HO-1-MSCs group, and (4) HO-1-MSCs + SnPP group. About 1 × 10(7) of autologous stem cells or an identical volume of saline was injected intracoronary into porcine hearts 1 hour after MI. Magnetic resonance imaging (MRI) assay and postmortem analysis were assessed four weeks after stem cell transplantation. RESULTS: Post hypoxia/reoxygenation in vitro, TGF-ß in the supernatant was significantly increased in the HO-1-MSCs ((874.88 ± 68.23) pg/ml) compared with Lacz-MSCs ((687.81 ± 57.64) pg/ml, P < 0.001). FGF-2 was also significantly increased in the HO-1-MSCs ((1106.48 ± 107.06) pg/ml) compared with the Lacz-MSCs ((853.85 ± 74.44) pg/ml, P < 0.001). In vivo, at four weeks after transplantation, HO-1 gene transfer increased the capillary density in the peri-infarct area compared with the Lacz-MSCs group (14.24 ± 1.66/HPFs vs. 11.51 ± 1.34/HPFs, P < 0.001). Arteriolar density was also significantly higher in HO-1-MSCs group than in the Lacz-MSCs group (7.86 ± 2.00/HPFs vs. 6.45 ± 1.74/HPFs, P = 0.001). At the same time, the cardiac function was significantly improved in the HO-1-MSCs group compared with the Lacz-MSCs group ((53.17 ± 3.55)% vs. (48.82 ± 2.98)%, P < 0.05). However, all these effects were significantly abrogated by SnPP. CONCLUSION: MSCs provided a beneficial effect on cardiac function after ischemia/reperfusion by the induction of therapeutic angiogenesis, and this effect was amplified by HO-1 overexpression.


Subject(s)
Heme Oxygenase-1/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Differentiation/physiology , Heme Oxygenase-1/genetics , Magnetic Resonance Imaging , Mesenchymal Stem Cells/enzymology , Swine , Swine, Miniature
19.
Zhonghua Xin Xue Guan Bing Za Zhi ; 38(9): 823-8, 2010 Sep.
Article in Chinese | MEDLINE | ID: mdl-21092653

ABSTRACT

OBJECTIVE: to explore the value of in vivo dynamic monitoring of abdominal aortic atherosclerosis (AS) by high field magnetic resonance (MR) imaging (MRI) in apoE-/- mice fed a high fat diet or infused with angiotensin. METHODS: high fat diet or angiotensin II infusion was applied to apoE-/- mice for establishment of abdominal aortic atherosclerosis model. Abdominal aorta MRI was performed at 3 time points (baseline, 3 and 6 months) in 13 high fat diet fed apoE-/- mice aged 10-12 months and 3 wild-type control mice; 10 apoE-/- mice aged 6 months were infused with angiotensin II (1000 or 500 ng × kg(-1)× min(-1), n = 5 each) or saline for 14 d through Osmotic minipump. The abdominal aortic artery MRI was performed at baseline and 14 d after infusion. Black blood sequences of FLASH T1 weighted images and Proton density weighted-T2 weighted dual echo images were obtained. At each observation time post MRI, mice (n = 3, 5 and 5 for high fat diet group and n = 5 and 5 for angiotensin II infusion group) were sacrificed for pathological examination of the abdominal artery. RESULTS: (1) the abdominal aorta atherosclerosis was identified in both high fat diet and angiotensin II treated apoE-/- mice but in WT controls. Lesion progression was documented in high fat diet fed apoE-/- mice characterized by significantly increased vessel wall (a marker of atherosclerotic burden, F = 29.94, P < 0.05) and gradually increased plaque signal in PDW and T2W images. Results derived from MRI corresponded histopathology findings in high fat diet fed apoE-/- mice (correlative coefficient = 0.84, 0.95, 0.90, P < 0.05, respectively). Both MRI and histology showed increased lipid composition and decreased fibrotic composition in these mice. (2) The vessel wall area increased significantly [(1.21 ± 0.21) mm(2) vs. (2.65 ± 0.48) mm(2), P < 0.05] and the abdominal aortic dissection aneurysms was identified in apoE-/- mice infused with high angiotensin II. The vessel wall area also increased [(0.85 ± 0.11) mm(2) vs. (1.01 ± 0.17) mm(2), P < 0.05] in low angiotensin II infused apoE-/- mice and the coefficient between MR and histopathology is 0.934. CONCLUSION: abdominal aortic unstable plaque model could be established by both high fat diet and angiotensin II infusion in apoE mice, angiotensin II infusion can transiently accelerate the progression of AS and can induce abdominal aortic dissection. Serial MR black blood sequences could demonstrate the development and progression of atherosclerosis in mouse abdominal aorta with excellent agreement to histopathology finding in terms of atherosclerotic burden and plaque composition. Thus, MRI appears to be a useful tool for in vivo AS plaque dynamic monitoring in mice.


Subject(s)
Arteriosclerosis , Disease Models, Animal , Magnetic Resonance Imaging/methods , Angiotensin II/administration & dosage , Animals , Aorta, Abdominal , Apolipoproteins E , Diet , Dietary Fats/administration & dosage , Male , Mice , Mice, Knockout
20.
Zhonghua Xin Xue Guan Bing Za Zhi ; 37(8): 692-5, 2009 Aug.
Article in Chinese | MEDLINE | ID: mdl-20021919

ABSTRACT

OBJECTIVE: To observe the effect of intracoronary transfer of autologous HO-1 overexpressed MSCs in porcine model of myocardial ischemia (1 h)/reperfusion. METHODS: Apoptosis was assayed and cytokine concentrations in supernatant were measured in cells exposed to hypoxia-reoxygen in vitro. In vivo, Chinese male mini-pigs were allocated to the following treatment groups: control group (saline), MSCs group (MSCs), MSCs transfected with pcDNA3.1-nHO-1 (HO-1-MSCs). 1 x 10(7) of autologous stem cells or identical volume of saline was injected intracoronary into porcine hearts 1 h after ischemia. MRI assay and postmortem analysis were assessed 3 months after stem cell transplantation. RESULTS: In vitro, cell apoptosis rate post hypoxia-reoxygen was significantly reduced in HO-1-MSCs group (30.30% +/- 7.64%) compared with that in MSCs group (56.93% +/- 4.68%, P < 0.001) and LacZ-MSCs group (55.88% +/- 4.38%, P < 0.001), VEGF was also significantly upregulated in HO-1-MSCs group [(768.44 +/- 78.38) pg/ml] compared with that in MSCs group [(555.27 +/- 67.67) pg/ml, P < 0.001] and LacZ-MSCs group [(522.97 +/- 71.45) pg/ml, P < 0.001]. In vivo, cardiac function was significantly improved in both MSCs transplantation groups compared to saline group (all P < 0.05 vs.saline) and the left ventricular ejection fraction was significantly higher in HO-1-MSCs group compared with that in MSCs group at 3 months after transplantation (53.50% +/- 2.09% vs. 49.54% +/- 2.74%, P = 0.017), capillary density in the peri-infarct area was also significantly higher in HO-1-MSC group than that in MSCs group [(14.59 +/- 2.39)/HPF vs. (11.78 +/- 2.48)/HPF, P = 0.033]. CONCLUSIONS: Efficacy of HO-1 overexpressed MSCs on improving cardiac function and promoting angiogenesis was greater than those by MSCs in this porcine ischemia/reperfusion model.


Subject(s)
Heme Oxygenase-1/genetics , Mesenchymal Stem Cell Transplantation , Myocardial Infarction/therapy , Transfection , Animals , Apoptosis , Cells, Cultured , Genetic Vectors , Male , Myocardial Ischemia/therapy , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...