Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Anal Methods ; 14(29): 2833-2840, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35786717

ABSTRACT

In this study, an in situ ATR-IR technique was used as a powerful tool to gain insight into the synthetic process of p-hydroxyphenylglycine (p-HPG) by the sulfamic acid-glyoxylic acid-phenol method. Combined with other chemical and instrumental analysis technologies, the reaction sequence and key intermediates of this one-pot reaction were determined, and two concomitant reaction paths have been put forward for the first time. The possible reaction mechanism has been suggested, and the reaction efficiency of each path is discussed in detail. Through the optimization of the experimental parameters, an approximately 40% increase in the final product yield was achieved compared with previous reports. We believe that this study will without a doubt trigger research interest in understanding the industrial production process of important chemicals and pharmaceuticals and as a result will promote the sustainable development and application of novel, efficient chemical reaction routes.


Subject(s)
Glycine , Phenol , Glycine/analogs & derivatives , Phenols , Spectrum Analysis
2.
CNS Neurosci Ther ; 28(7): 1033-1044, 2022 07.
Article in English | MEDLINE | ID: mdl-35419951

ABSTRACT

AIMS: Sonic hedgehog subtype medulloblastoma is featured with overactivation of hedgehog pathway and can be targeted by SMO-specific inhibitors. However, the resistance is frequently developed leading to treatment failure of SMO inhibitors. W535L mutation of SMO (SMOW535L ) is thought to be an oncogenic driver for Sonic hedgehog subtype MB and confer resistance to SMO inhibitors. The regulation network of SMOW535L remains to be explored in comparison with wild-type SMO (SMOWT ). METHODS: In this study, we profiled transcriptomes, methylomes, and interactomes of MB cells expression SMOWT or SMOW535L in the treatment of DMSO or SMO inhibitor, respectively. RESULTS: Analysis of transcriptomic data indicated that SMO inhibitor disrupted processes of endocytosis and cilium organization in MB cells with SMOWT , which are necessary for SMO activation. In MB cells with SMOW535L , however, SMO inhibitor did not affect the two processes-related genes, implying resistance of SMOW535L toward SMO inhibitor. Moreover, we noticed that SMO inhibitor significantly inhibited metabolism-related pathways. Our metabolic analysis indicated that nicotinate and nicotinamide metabolism, glycerolipid metabolism, beta-alanine metabolism, and synthesis and degradation of ketone bodies might be involved in SMOW535L function maintenance. Interactomic analysis revealed casein kinase II (CK2) as an important SMO-associated protein. Finally, we linked CK2 and AKT together and found combination of inhibitors targeting CK2 and AKT showed synergetic effects to inhibit the growth of MB cells with SMO constitutive activation mutation. CONCLUSIONS: Taken together, our work described SMO-related transcriptomes, metabolomes, and interactomes under different SMO status and treatment conditions, identifying CK2 and AKT as therapeutic targets for SHH-subtype MB cells with SMO inhibitor resistance.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Smoothened Receptor/therapeutic use
3.
J Pathol ; 255(4): 374-386, 2021 12.
Article in English | MEDLINE | ID: mdl-34370292

ABSTRACT

Calcyphosine (CAPS) was initially identified from the canine thyroid. It also exists in many types of tumor, but its expression and function in glioma remain unknown. Here we explored the clinical significance and the functional mechanisms of CAPS in glioma. We found that CAPS was highly expressed in glioma and high expression of CAPS was correlated with poor survival, in glioma patients and public databases. Cox regression analysis showed that CAPS was an independent prognostic factor for glioma patients. Knockdown of CAPS suppressed the proliferation, whereas overexpression of CAPS promoted the proliferation of glioma both in vitro and in vivo. CAPS regulated the G2/M phase transition of the cell cycle, but had no obvious effect on apoptosis. CAPS affected PLK1 phosphorylation through interaction with MYPT1. CAPS knockdown decreased p-MYPT1 at S507 and p-PLK1 at S210. Expression of MYPT1 S507 phosphomimic rescued PLK1 phosphorylation and the phenotype caused by CAPS knockdown. The PLK1 inhibitor volasertib enhanced the therapeutic effect of temozolomide in glioma. Our data suggest that CAPS promotes the proliferation of glioma by regulating the cell cycle and the PLK1 inhibitor volasertib might be a chemosensitizer of glioma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Brain Neoplasms/pathology , Calcium-Binding Proteins/metabolism , Glioma/pathology , Adult , Aged , Animals , Apoptosis/drug effects , Apoptosis/physiology , Brain Neoplasms/metabolism , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Female , Glioma/metabolism , Humans , Male , Mice , Middle Aged , Pteridines/pharmacology , Xenograft Model Antitumor Assays
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-879188

ABSTRACT

The metabolites of salvianolic acid A and salvianolic acid B in rats were analyzed and compared by ultra-high-perfor-mance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS). After the rats were administrated by gavage, plasma at different time points and urine within 24 hours were collected to be treated by solid phase extraction(SPE), then they were gradient eluted by Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) and 0.1% formic acid solution(A)-acetonitrile(B) mobile phase system, and finally all biological samples of rats were analyzed under negative ion scanning mode. By obtaining the accurate relative molecular mass and multi-level mass spectrometry information of metabolites, combined with the characteristic cleavage law of the reference standard and literature reports, a total of 30 metabolites, including salvianolic acid A and B, were identified. Among them, there were 24 metabolites derived from salvianolic acid A, with the main metabolic pathways including ester bond cleavage, dehydroxylation, decarboxylation, hydrogenation, methylation, hydroxylation, sulfonation, glucuronidation, and their multiple reactions. There were 15 metabolites of salvianolic acid B, and the main biotransformation pathways were five-membered ring cracking, ester bond cleavage, decarboxylation, dehydroxylation, hydrogenation, methylation, sulfonation, glucuronidation, and their compound reactions. In this study, the cross-metabolic profile of salvianolic acid A and B was elucidated completely, which would provide reference for further studies on the basis of pharmacodynamic substances and the exploration of pharmacological mechanism.


Subject(s)
Animals , Rats , Benzofurans , Caffeic Acids , Chromatography, High Pressure Liquid , Lactates , Mass Spectrometry , Technology
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-828362

ABSTRACT

A method of ultra-high performance liquid chromatography coupled with quadrupole/electrostatic field Obitrap high-resolution mass spectrometry(UHPLC-Q-Exactive MS) was established to comprehensively identify the metabolites of carnosic acid in rats. After oral gavage of carnosic acid CMC-Na suspension in rats, urine, plasma and feces samples were collected and pretreated by solid phase extraction(SPE). Acquity UPLC BEH C_(18 )column(2.1 mm×100 mm, 1.7 μm) was used with 0.1% formic acid solution(A)-acetonitrile(B) as the mobile phase for the gradient elution. Biological samples were analyzed by quadrupole/electrostatic field Obitrap high-resolution mass spectrometry in positive and negative ion mode. Based on the accurate molecular mass, fragment ion information, and related literature reports, a total of 28 compounds(including carnosic acid) were finally identified in rat samples. As a result, the main metabolic pathways of carnosic acid in rats are oxidation, hydroxylation, methylation, glucuronide conjugation, sulfate conjugation, S-cysteine conjugation, glutathione conjugation, demethylation, decarbonylation and their composite reactions. The study showed that the metabolism of carnosic acid in rats could be efficiently and comprehensively clarified by using UHPLC-Q-Exactive MS, providing a reference for clarifying the material basis and metabolic mechanism of carnosic acid.


Subject(s)
Animals , Rats , Abietanes , Chromatography, High Pressure Liquid , Mass Spectrometry , Solid Phase Extraction
6.
Cancer Res ; 79(19): 4869-4881, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31311807

ABSTRACT

Cancer metastasis, a leading cause of death in patients, is associated with aberrant expression of epigenetic modifiers, yet it remains poorly defined how epigenetic readers drive metastatic growth and whether epigenetic readers are targetable to control metastasis. Here, we report that bromodomain-containing protein 4 (BRD4), a histone acetylation reader and emerging anticancer therapeutic target, promotes progression and metastasis of gastric cancer. The abundance of BRD4 in human gastric cancer tissues correlated with shortened metastasis-free gastric cancer patient survival. Consistently, BRD4 maintained invasiveness of cancer cells in vitro and their dissemination at distal organs in vivo. Surprisingly, BRD4 function in this context was independent of its putative transcriptional targets such as MYC or BCL2, but rather through stabilization of Snail at posttranslational levels. In an acetylation-dependent manner, BRD4 recognized acetylated lysine 146 (K146) and K187 on Snail to prevent Snail recognition by its E3 ubiquitin ligases FBXL14 and ß-Trcp1, thereby inhibiting Snail polyubiquitination and proteasomal degradation. Accordingly, genome-wide transcriptome analyses identified that BRD4 and Snail regulate a partially shared metastatic gene signature in gastric cancer cells. These findings reveal a noncanonical posttranscriptional regulatory function of BRD4 in maintaining cancer growth and dissemination, with immediate translational implications for treating gastric metastatic malignancies with clinically available bromodomain inhibitors. SIGNIFICANCE: These findings reveal a novel posttranscriptional regulatory function of the epigenetic reader BRD4 in cancer metastasis via stabilizing Snail, with immediate translational implication for treating metastatic malignancies with clinically available bromodomain inhibitors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/4869/F1.large.jpg.


Subject(s)
Cell Cycle Proteins/metabolism , Neoplasm Invasiveness/pathology , Snail Family Transcription Factors/metabolism , Stomach Neoplasms/pathology , Transcription Factors/metabolism , Acetylation , Animals , Disease Progression , Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Transcriptome
7.
Cell Death Dis ; 9(10): 988, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250190

ABSTRACT

Plastic phenotype convention between glioma stem cells (GSCs) and non-stem tumor cells (NSTCs) significantly fuels glioblastoma heterogeneity that causes therapeutic failure. Recent progressions indicate that glucose metabolic reprogramming could drive cell fates. However, the metabolic pattern of GSCs and NSTCs and its association with tumor cell phenotypes remain largely unknown. Here we found that GSCs were more glycolytic than NSTCs, and voltage-dependent anion channel 2 (VDAC2), a mitochondrial membrane protein, was critical for metabolic switching between GSCs and NSTCs to affect their phenotypes. VDAC2 was highly expressed in NSTCs relative to GSCs and coupled a glycolytic rate-limiting enzyme platelet-type of phosphofructokinase (PFKP) on mitochondrion to inhibit PFKP-mediated glycolysis required for GSC maintenance. Disruption of VDAC2 induced dedifferentiation of NSTCs to acquire GSC features, including the enhanced self-renewal, preferential expression of GSC markers, and increased tumorigenicity. Inversely, enforced expression ofVDAC2 impaired the self-renewal and highly tumorigenic properties of GSCs. PFK inhibitor clotrimazole compromised the effect of VDAC2 disruption on glycolytic reprogramming and GSC phenotypic transition. Clinically, VDAC2 expression inversely correlated with glioma grades (Immunohistochemical staining scores of VDAC2 were 4.7 ± 2.8, 3.2 ± 1.9, and 1.9 ± 1.9 for grade II, grade III, and IV, respectively, p < 0.05 for all) and the patients with high expression of VDAC2 had longer overall survival than those with low expression of VDAC2 (p = 0.0008). In conclusion, we demonstrate that VDAC2 is a new glycolytic regulator controlling the phenotype transition between glioma stem cells and non-stem cells and may serves as a new prognostic indicator and a potential therapeutic target for glioma patients.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glucose/metabolism , Neoplastic Stem Cells/metabolism , Phenotype , Phosphofructokinase-1, Type C/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Plasticity , Clotrimazole/pharmacology , Gene Knockdown Techniques , Glioblastoma/pathology , Glycolysis , Humans , Kaplan-Meier Estimate , Male , Mice, SCID , Mitochondria/metabolism , Neoplasm Grading , Phosphofructokinase-1/antagonists & inhibitors , Voltage-Dependent Anion Channel 2/genetics , Xenograft Model Antitumor Assays
8.
J Pathol ; 245(2): 160-171, 2018 06.
Article in English | MEDLINE | ID: mdl-29473166

ABSTRACT

Capillary morphogenesis protein 2 (CMG2) was originally identified through its participation in capillary morphogenesis, and subsequently identified as the second receptor for anthrax toxin (ANTXR2). Although tumor-associated functions of CMG2 have also been reported, the clinical significance and functional mechanism of CMG2 in glioma remain to be elucidated. We assessed the clinicopathological relevance of CMG2 in a cohort of 48 glioma patients as well as through public glioma databases, and explored the function of CMG2 using glioblastoma (GBM) models in vitro and in vivo. CMG2 overexpression was associated with increased tumor grade and poor patient survival. CMG2 promoted G2/M-phase transition during the cell cycle of GBM cells in vitro and contributed to tumor growth in vivo. We also observed that CMG2 is implicated in the activation of extracellular signal-regulated kinases (ERKs), epithelial-mesenchymal transition (EMT), migration, and invasion in GBM cells. Transcriptomic analysis of GBM cells with or without CMG2 overexpression indicated that a panel of oncogenic signaling pathways was altered with CMG2 upregulation, implying that CMG2 might orchestrate these signaling pathways to regulate the growth of GBM cells. Yes-associated protein 1 (YAP1) activity was enhanced by CMG2 overexpression but suppressed with CMG2 deficiency. Since YAP1 is critically implicated in GBM, the oncogenic roles of CMG2 in GBM cells might thus be mediated, at least partially, by YAP1. Altogether, CMG2 functioned as an oncogene in glioma cells and is a potential prognostic biomarker or therapeutic target for the clinical treatment of glioma. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Glioma/metabolism , Receptors, Peptide/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Databases, Genetic , G2 Phase Cell Cycle Checkpoints , Glioma/genetics , Glioma/pathology , HEK293 Cells , Humans , Male , Mice, SCID , Neoplasm Invasiveness , Phosphoproteins/metabolism , Prognosis , Receptors, Peptide/genetics , Signal Transduction , Transcription Factors , Tumor Burden , Tumor Cells, Cultured , YAP-Signaling Proteins
9.
Lab Invest ; 97(11): 1354-1363, 2017 11.
Article in English | MEDLINE | ID: mdl-28759011

ABSTRACT

Glioma is the most prevalent type of tumor in the brain and is comprised of grades I-IV, according to the WHO classification system. Grade IV glioma is also known as glioblastoma multiforme (GBM), the most malignant type of glioma. Glioma is characterized by a complex molecular background, and gene profiling studies have disclosed critical genetic events in human gliomas, which make targeted therapies the most promising therapeutic strategy. However, crosstalk between the targeted signaling pathways may hinder the efficacy of targeted therapies in gliomas. Therefore, it is necessary to identify effective markers to stratify patients for specific therapeutic procedures. Although several mechanisms have been proposed based on the crosstalk between PI3K/AKT/mTORC1 and Hippo/YAP pathways, the clinical significance of the two pathways has not yet been assessed in a combinatorial manner. In this study, we evaluated the two pathways in human glioma specimens and observed the positive correlation between protein levels of p-mTORS2448 and YAP in gliomas. The findings indicated that high expression of p-mTORS2448 and YAP correlated with poor overall survival of glioma patients. As p-mTORS2448 is a specific marker of mTORC1 activation, our results reveal a potential interaction between mTORC1 and YAP, which might functionally participate in the development and progression of gliomas. In support of this hypothesis, a combination of inhibitors targeting mTORC1 and YAP showed a better inhibitory effect on growth of glioma cell lines. Altogether, our work, for the first time, reveals that p-mTORS2448 and YAP can be used as markers of PI3K/AKT/mTORC1 and Hippo/YAP pathway activity to predict prognosis and are target candidates for personalized medicine.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Glioma/metabolism , Neoplasm Proteins/metabolism , Phosphoproteins/metabolism , Protein Processing, Post-Translational , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adult , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cohort Studies , Enzyme Activation/drug effects , Female , Glioma/diagnosis , Glioma/drug therapy , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Proteins/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Phosphoproteins/antagonists & inhibitors , Phosphorylation/drug effects , Prognosis , Protein Processing, Post-Translational/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Transcription Factors , YAP-Signaling Proteins
10.
Lab Invest ; 97(10): 1180-1187, 2017 10.
Article in English | MEDLINE | ID: mdl-28504686

ABSTRACT

Nordihydroguaiaretic acid (NDGA) and its synthetic chiral analog dl-nordihydroguaiaretic acid (Nordy) show collective benefits in anti-tumor, and defending against viral and bacterial infections. Here, we synthetized a new derivative-NDGA-P21 based on NDGA structure. Regardless of the structural similarity, NDGA-P21 exhibited stronger capability in suppression of glioblastoma (GBM) cell growth as compared to Nordy. Mechanically, NDGA-P21 is able to arrest cell cycle of GBM cells in G0/G1 phase, and to block cell proliferation sequentially. It is important to note that NDGA-P21 is able to impair the stemness of glioma stem-like cells (GSLCs) via measurement of colony formation and sphere formation. Taken together, the novel NDGA-based compound NDGA-P21 exhibits potential therty -20 apeutic implications through inhibiting proliferation of glioma cells and self-renewal capability of GSLCs.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Glioma/metabolism , Masoprocol/analogs & derivatives , Masoprocol/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...