Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Int Immunopharmacol ; 136: 112415, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850791

ABSTRACT

The microenvironment of hepatocellular carcinoma (HCC) is characterized by hypoxia, which leads to immune evasion of HCC. Therefore, gaining a comprehensive understanding of the mechanism underlying the impact of hypoxia on HCC cells may provide valuable insights into immune checkpoint therapy. Based on analysis of databases and clinical samples, we observed that expression level of programmed cell death ligand 1 (PD-L1) and long non-coding RNA (lncRNA) MIR155HG in patients in the hypoxia group were higher than those in the non-hypoxia group. Furthermore, there was a positive correlation between the expression of PD-L1 and MIR155HG with that of HIF-1α. In vitro experiments using hypoxic treatment demonstrated an increase in PD-L1 and MIR155HG expression levels in HCC cells. While the hypoxia-induced upregulation of PD-L1 could be reversed by knocking down MIR155HG. Mechanistically, as a transcription factor, HIF-1α binds to the promoter region of MIR155HG to enhance its transcriptional activity under hypoxic conditions. Hypoxia acts as a stressor promoting nuclear output of ILF3 leading to increased binding of ILF3 to MIR155HG, thereby enhancing stability for HIF-1α mRNA. In vivo, knocking down MIR155HG inhibit subcutaneous tumor growth, reduce the expression of HIF-1α and PD-L1 within tumors; additionally, it enhances anti-tumor immunity response. These findings suggested that through inducing MIR155HG to interact with ILF3, hypoxia increases HIF-1α mRNA stability resulting in elevated PD-L1 expression in HCC and thus promoting immune escape. In summary, this study provides new insights into the effects of hypoxia on HCC immunosuppression.

2.
Hortic Res ; 11(5): uhae081, 2024 May.
Article in English | MEDLINE | ID: mdl-38766530

ABSTRACT

BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.

3.
Cancer Cell ; 42(6): 1106-1125.e8, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38788718

ABSTRACT

Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.


Subject(s)
Carcinoma, Neuroendocrine , Gene Expression Regulation, Neoplastic , Humans , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/classification , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , YAP-Signaling Proteins , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
4.
Int Immunopharmacol ; 134: 112116, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38696909

ABSTRACT

microRNAs (miRNAs), a class of non-coding RNA with 20-24 nucleotides, are defined as the powerful regulators for gene expression. miR-21 is a multifunctional miRNA enriched in the circulatory system and multiple organs, which not only serves as a non-invasive biomarker in disease diagnosis, but also participates in many cellular activities. In various chronic liver diseases, the increase of miR-21 affects glycolipid metabolism, viral infection, inflammatory and immune cell activation, hepatic stellate cells activation and tissue fibrosis, and autophagy. Moreover, miR-21 is also a liaison in the deterioration of chronic liver disease to hepatocellular carcinoma (HCC), and it impacts on cell proliferation, apoptosis, migration, invasion, angiogenesis, immune escape, and epithelial-mesenchymal transformation by regulating target genes expression in different signaling pathways. In current research on miRNA therapy, some natural products can exert the hepatoprotective effects depending on the inhibition of miR-21 expression. In addition, miR-21-based therapeutic also play a role in regulating intracellular miR-21 levels and enhancing the efficacy of chemotherapy drugs. Herein, we systemically summarized the recent progress of miR-21 on biosynthesis, biomarker function, molecular mechanism and miRNA therapy in chronic liver disease and HCC, and looked forward to outputting some information to enable it from bench to bedside.


Subject(s)
Carcinoma, Hepatocellular , Liver Diseases , Liver Neoplasms , MicroRNAs , MicroRNAs/genetics , Humans , Animals , Liver Diseases/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Biomarkers
5.
Biomed Pharmacother ; 175: 116694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713943

ABSTRACT

The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Kaempferols , Non-alcoholic Fatty Liver Disease , Obesity , Humans , Kaempferols/pharmacology , Kaempferols/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Obesity/drug therapy , Obesity/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Signal Transduction/drug effects
6.
Adv Sci (Weinh) ; : e2401955, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810025

ABSTRACT

Wide-bandgap perovskite solar cells (PSCs) toward tandem photovoltaic applications are confronted with the challenge of device thermal stability, which motivates to figure out a thorough cognition of wide-bandgap PSCs under thermal stress, using in situ atomic-resolved transmission electron microscopy (TEM) tools combing with photovoltaic performance characterizations of these devices. The in situ dynamic process of morphology-dependent defects formation at initial thermal stage and their proliferations in perovskites as the temperature increased are captured. Meanwhile, considerable iodine enables to diffuse into the hole-transport-layer along the damaged perovskite surface, which significantly degrade device performance and stability. With more intense thermal treatment, atomistic phase transition reveals the perovskite transform to PbI2 along the topo-coherent interface of PbI2/perovskite. In conjunction with density functional theory calculations, a mutual inducement mechanism of perovskite surface damage and iodide diffusion is proposed to account for the structure-property nexus of wide-bandgap PSCs under thermal stress. The entire interpretation also guided to develop a thermal-stable monolithic perovskite/silicon tandem solar cell.

7.
Nanoscale ; 16(22): 10727-10736, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38721638

ABSTRACT

The photocatalytic water-mediated CO2 reduction reaction, which holds great promise for the conversion of CO2 into valuable chemicals, is often hindered by inefficient separation of photogenerated charges and a lack of suitable catalytic sites. Herein, we have developed a glycerol coordination assembly approach to precisely control the distribution of atomically dispersed Cu species by occupying Ti-defects and adjusting the ratio between Cu species and Ti-defects in a hierarchical TiO2. The optimal sample demonstrates a ∼4-fold improvement in CO2-to-CO conversion compared to normal TiO2 nanoparticles. The high activity could be attributed to the Ti defects, which enhance the photogenerated charge separation and simultaneously facilitate the adsorption of water molecules, thereby promoting the water oxidation reaction. Moreover, by means of in situ EPR and FTIR spectra, we have demonstrated that Cu species can effectively capture photogenerated electrons and facilitate the adsorption of CO2, so as to catalyze the reduction of CO2. This work provides a strategy for the construction of atomic-level synergistic catalytic sites and the utilization of in situ techniques to reveal the underlying mechanism.

8.
Ecotoxicol Environ Saf ; 276: 116308, 2024 May.
Article in English | MEDLINE | ID: mdl-38593496

ABSTRACT

BACKGROUND: Impact of outdoor and household air pollution on physical function remains unelucidated. This study examined the influence of various ambient particulate sizes (PM1, PM2.5, and PM10) and household fuel usage on physical function. METHODS: Data from the China Health and Retirement Longitudinal Study (CHARLS) spanning 2011 and 2015 were utilized. The physical functional score was computed by summing scores from four tests: grip strength, gait speed, chair stand test, and balance. Multivariate linear and linear mixed-effects models were used to explore the separate and combined effects of PM1, PM2.5, PM10 and household fuel use on physical function in the cross-sectional and longitudinal analyses, respectively, and to further observe the effects of fuel cleanup on physical function in the context of air pollution exposure. RESULTS: Both cross-sectional and longitudinal analyses revealed negative correlations between PM1 (ß = -0.044; 95% CI: -0.084, -0.004), PM2.5 (ß = -0.024; 95% CI: -0.046, -0.001), PM10 (ß = -0.041; 95% CI: -0.054, -0.029), and physical function, with a more pronounced impact observed for fine particulate matter (PM1). Cleaner fuel use was associated with enhanced physical function compared to solid fuels (ß = 0.143; 95% CI: 0.070, 0.216). The presence of air pollutants and use of solid fuels had a negative impact on physical function, while cleaner fuel usage mitigated the adverse effects of air pollutants, particularly in areas with high exposure. CONCLUSION: This study underscores the singular and combined detrimental effects of air pollutants and solid fuel usage on physical function. Addressing fine particulate matter, specifically PM1, and prioritizing efforts to improve household fuel cleanliness in regions with elevated air pollution levels are crucial for preventing physical disability.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Particulate Matter , Particulate Matter/analysis , China , Humans , Cross-Sectional Studies , Longitudinal Studies , Middle Aged , Male , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/adverse effects , Female , Aged , Cohort Studies , Particle Size , Environmental Exposure , Cooking , Air Pollution/statistics & numerical data , Air Pollution/adverse effects
9.
Small ; : e2401481, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616774

ABSTRACT

Organic cathode materials show excellent prospects for sodium-ion batteries (SIBs) owing to their high theoretical capacity. However, the high solubility and low electrical conductivity of organic compounds result in inferior cycle stability and rate performance. Herein, an extended conjugated organic small molecule is reported that combines electroactive quinone with piperazine by the structural designability of organic materials, 2,3,7,8-tetraamino-5,10-dihydrophenazine-1,4,6,9-tetraone (TDT). Through intermolecular condensation reaction, many redox-active groups C═O and extended conjugated structures are introduced without sacrificing the specific capacity, which ensures the high capacity of the electrode and enhances rate performance. The abundant NH2 groups can form intermolecular hydrogen bonds with the C═O groups to enhance the intermolecular interactions, resulting in lower solubility and higher stability. The TDT cathode delivers a high initial capacity of 293 mAh g-1 at 500 mA g-1 and maintains 90 mAh g-1 at an extremely high current density of 70 A g-1. The TDT || Na-intercalated hard carbon (Na-HC) full cells provide an average capacity of 210 mAh g-1 during 100 cycles at 500 mA g-1 and deliver a capacity of 120 mAh g-1 at 8 A g-1.

10.
J Hazard Mater ; 470: 134073, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552393

ABSTRACT

Polychlorinated biphenyls (PCBs) are endocrine-disrupting chemicals that have been associated with various adverse health conditions. Herein we explored the associations of PCBs with dyslipidemia and further assessed the modification effect of genetic susceptibility and lifestyle factors. Six serum PCBs (PCB-28, 101, 118, 138, 153, 180) were determined in 3845 participants from the Wuhan-Zhuhai cohort. Dyslipidemia, including hyper-total cholesterol (HyperTC), hyper-triglyceride (HyperTG), hyper-low density lipoprotein cholesterol (HyperLDL-C), and hypo-high density lipoprotein cholesterol (HypoHDL-C) were determined, and lipid-specific polygenic risk scores (PRS) and healthy lifestyle score were constructed. We found that all six PCB congeners were positively associated with the prevalence of dyslipidemias, and ΣPCB level was associated with HyperTC, HyperTG, and HyperLDL-C in dose-response manners. Compared with the lowest tertiles of ΣPCB, the odds ratios (95% confidence intervals) in the highest tertiles were 1.490 (1.258, 1.765) for HyperTC, 1.957 (1.623, 2.365) for HyperTG, and 1.569 (1.316, 1.873) for HyperLDL-C, respectively. Compared with those with low ΣPCB, healthy lifestyle, and low genetic risk, participants with high ΣPCB, unfavorable lifestyle, and high genetic risk had the highest odds of HyperTC, HyperTG, and HyperLDL-C. Our study provided evidence that high PCB exposure exacerbated the association of genetic risk and unhealthy lifestyle with dyslipidemia.


Subject(s)
Dyslipidemias , Genetic Predisposition to Disease , Life Style , Polychlorinated Biphenyls , Humans , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/toxicity , Dyslipidemias/epidemiology , Dyslipidemias/chemically induced , Dyslipidemias/genetics , Male , Female , Middle Aged , China/epidemiology , Adult , Environmental Exposure/adverse effects , Environmental Pollutants/blood , Environmental Pollutants/toxicity , Aged , East Asian People
11.
Article in English | MEDLINE | ID: mdl-38522902

ABSTRACT

BACKGROUND: Non-optimum temperatures are associated with increased risk of respiratory diseases, but the effects of apparent temperature (AT) on respiratory diseases remain to be investigated. METHODS: Using daily data from 2016 to 2020 in Ganzhou, a large city in southern China, we analyzed the impact of AT on outpatient and inpatient visits for respiratory diseases. We considered total respiratory diseases and five subtypes (influenza and pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma and chronic obstructive pulmonary disease [COPD]). Our analysis employed a distributed lag nonlinear model (DLNM) combined with a generalized additive model (GAM). RESULTS: We recorded 94,952 outpatients and 72,410 inpatients for respiratory diseases. We found AT significantly non-linearly associated with daily outpatient and inpatient visits for total respiratory diseases, influenza and pneumonia, and URTI, primarily during comfortable AT levels, while it was exclusively related with daily inpatient visits for LRTI and COPD. Moderate heat (32.1 °C, the 75.0th centile) was observed with a significant effect on both daily outpatient and inpatient visits for total respiratory diseases at a relative risk of 1.561 (1.161, 2.098) and 1.276 (1.027, 1.585), respectively (both P < 0.05), while the results of inpatients became insignificant with the adjustment for CO and O3. The attributable fractions in outpatients and inpatients were as follows: total respiratory diseases (24.43% and 18.69%), influenza and pneumonia (31.54% and 17.33%), URTI (23.03% and 32.91%), LRTI (37.49% and 30.00%), asthma (9.83% and 3.39%), and COPD (30.67% and 10.65%). Stratified analyses showed that children ≤5 years old were more susceptible to moderate heat than older participants. CONCLUSIONS: In conclusion, our results indicated moderate heat increase the risk of daily outpatient and inpatient visits for respiratory diseases, especially among children under the age of 5.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Influenza, Human , Pneumonia , Pulmonary Disease, Chronic Obstructive , Respiration Disorders , Respiratory Tract Infections , Child , Humans , Child, Preschool , Outpatients , Temperature , Inpatients , Air Pollution/adverse effects , Influenza, Human/epidemiology , Time Factors , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Asthma/epidemiology , Asthma/etiology , Pneumonia/epidemiology , Pneumonia/etiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , China/epidemiology , Air Pollutants/analysis , Particulate Matter/analysis
12.
Funct Integr Genomics ; 24(2): 67, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528184

ABSTRACT

BACKGROUND: Although the events associated with alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI) can be identified by many approaches based on isoform sequencing (Iso-Seq), these analyses are generally independent of each other and the links between these events are still rarely mentioned. However, an interdependency analysis can be achieved because the transcriptional start site, splice sites and polyA site could be simultaneously included in a long, full-length read from Iso-Seq. RESULTS: We create ASAPA pipeline that enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data. We tested this pipeline using Arabidopsis data and found some interesting results: some adjacent introns tend to be simultaneously spliced or retained; coupling between AS and ATI or APA is limited to the initial or terminal intron; and ATI and APA are potentially linked in some special cases. CONCLUSION: Our pipeline enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data, which is conducive to a better understanding of transcription landscape generation.


Subject(s)
Alternative Splicing , Polyadenylation , Protein Isoforms/genetics , Computational Biology , High-Throughput Nucleotide Sequencing
13.
Article in English | MEDLINE | ID: mdl-38345957

ABSTRACT

In this paper, we introduce Neural-ABC, a novel parametric model based on neural implicit functions that can represent clothed human bodies with disentangled latent spaces for identity, clothing, shape, and pose. Traditional mesh-based representations struggle to represent articulated bodies with clothes due to the diversity of human body shapes and clothing styles, as well as the complexity of poses. Our proposed model provides a unified framework for parametric modeling, which can represent the identity, clothing, shape and pose of the clothed human body. Our proposed approach utilizes the power of neural implicit functions as the underlying representation and integrates well-designed structures to meet the necessary requirements. Specifically, we represent the underlying body as a signed distance function and clothing as an unsigned distance function, and they can be uniformly represented as unsigned distance fields. Different types of clothing do not require predefined topological structures or classifications, and can follow changes in the underlying body to fit the body. Additionally, we construct poses using a controllable articulated structure. The model is trained on both open and newly constructed datasets, and our decoupling strategy is carefully designed to ensure optimal performance. Our model excels at disentangling clothing and identity in different shape and poses while preserving the style of the clothing. We demonstrate that Neural-ABC fits new observations of different types of clothing. Compared to other state-of-the-art parametric models, Neural-ABC demonstrates powerful advantages in the reconstruction of clothed human bodies, as evidenced by fitting raw scans, depth maps and images. We show that the attributes of the fitted results can be further edited by adjusting their identities, clothing, shape and pose codes. The dataset and trained parametric model will be available at https://ustc3dv.github.io/NeuralABC/.

14.
J Colloid Interface Sci ; 663: 238-250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401444

ABSTRACT

Herein, a novel two-dimensional double-pore covalent organic framework (JLNU-305) was synthesized using N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TAPD) and 2,2'-bipyridine-5,5'-dicarboxaldehyde (BPDA). The extended π-π conjugated structure and nitrogen-riched pyridine in JLNU-305 (JLNU = Jilin Normal University) provide abundant binding sites for Fe doping. The obtained JLNU-305-Fe exhibited high and recycled catalytic efficiency for peroxydisulfate (PDS) activation to completely degrade 10 mg/L 2,4-dichlorophenol (2,4-DCP) within 8 min. The JLNU-305-Fe/PDS system showed excellent catalytic activity and cyclic stability. The capture experiments and electron paramagnetic resonance (ESR) analysis indicated that the catalytic behavior of JLNU-305-Fe/PDS is contributed to the synergistic effect between free radicals and non-free radicals. It is the first time to activate PDS for covalent organic frameworks (COFs) being used to degrade 2,4-DCP, which has a great potential for development and practical application in related water environment remediation.

15.
BMC Med ; 22(1): 16, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38225649

ABSTRACT

BACKGROUND: Little is known about the effects of night shifts and their interactions with genetic factors on chronic obstructive pulmonary disease (COPD). In this study, we aim to investigate relationships between long-term night shift work exposure and COPD risk, and assess modification effects of genetic predisposition. METHODS: A total of 277,059 subjects who were in paid employment or self-employed were included in the UK Biobank. Information on current and lifetime employment was obtained, and a weighted COPD-specific genetic risk score (GRS) was constructed. We used Cox proportional hazard models to investigate associations between night shift work and COPD risk, and their interaction with COPD-specific GRS. RESULTS: The cohort study included 277,059 participants (133,063 men [48.03%]; mean [SD] age, 52.71 [7.08] years). During a median follow-up of 12.87 years, we documented 6558 incidents of COPD. From day work, irregular night shifts to regular night shifts, there was an increased trend in COPD incidence (P for trend < 0.001). Compared with day workers, the hazard ratio (HR) and 95% confidence interval (CI) of COPD was 1.28 (1.20, 1.37) for subjects with rarely/sometimes night shifts and 1.49 (1.35, 1.66) for those with permanent night shifts. Besides, the longer durations (especially in subjects with night shifts ≥ 10 years) and increasing monthly frequency of night shifts (in workers with > 8 nights/month) were associated with a higher COPD risk. Additionally, there was an additive interaction between night shifts and genetic susceptibility on the COPD risk. Subjects with permanent night shifts and high genetic risk had the highest risk of COPD (HR: 1.90 [95% CI: 1.63, 2.22]), with day workers with low genetic risk as a reference. CONCLUSIONS: Long-term night shift exposure is associated with a higher risk of COPD. Our findings suggest that decreasing the frequency and duration of night shifts may offer a promising approach to mitigating respiratory disease incidence in night shift workers, particularly in light of individual susceptibility.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Shift Work Schedule , Male , Humans , Middle Aged , Shift Work Schedule/adverse effects , Work Schedule Tolerance , Cohort Studies , Incidence , Prospective Studies , Biological Specimen Banks , UK Biobank , Risk Factors , Pulmonary Disease, Chronic Obstructive/epidemiology
16.
Cancer Immunol Immunother ; 73(2): 37, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281198

ABSTRACT

BACKGROUND: Numerous studies have highlighted the crucial value of the heavy chain of ferritin (FTH1) as a key regulator of iron metabolism and a suppressor of ferroptosis, intimately tied to the tumor immune microenvironment (TIME). Nevertheless, the precise impact of FTH1 on cancer immunotherapy remains vague. Our study aims to systematically explore the prognostic significance and immune role of FTH1 in pan-cancers immunotherapy. METHODS: Our study delves into the potential of FTH1 as an immunotherapeutic target within the TIME of various solid cancers. The immune landscape and underlying mechanisms of FTH1 in the TIME were investigated by multiple algorithms and bioinformatics methods. Single-cell sequencing analysis and multiplex immunofluorescence staining techniques are applied to observe FTH1 co-expression on both tumor and immune cells. RESULTS: FTH1 exhibited aberrant expression patterns across multiple cancers, which is strongly correlated with immunotherapy resistance. Patients with high FTH1 expression levels tended to derive less benefit from immunotherapies. Moreover, FTH1 demonstrated a significant correlation with TIME infiltration, immune checkpoint molecules, and immune-related pathways. Notably, FTH1 showed a positive association with macrophage infiltrations, its expression was particularly noteworthy in malignant cells and macrophages. Inhibiting FTH1-related signaling pathways appeared to be a potential strategy to counteract tumor immunotherapy resistance. CONCLUSION: Our comprehensive analyses may offer valuable insights into the role of FTH1 in tumor immunotherapy. The observed correlations pave the way for further functional experiments, fostering an enhanced understanding that could shape future research endeavors.


Subject(s)
Neoplasms , Humans , Prognosis , Neoplasms/therapy , Algorithms , Computational Biology , Immunotherapy , Tumor Microenvironment , Ferritins , Oxidoreductases
17.
Cell Signal ; 115: 111039, 2024 03.
Article in English | MEDLINE | ID: mdl-38199599

ABSTRACT

BACKGROUND: An increasing number of studies have reported the involvement of oncogenes in the regulation of the immune system. LAIR1 is an immunosuppressive molecule and its role in immune-related diseases has been mainly reported. To date, it is unclear whether LAIR1 in tumor cells is involved in immune regulation. Therefore, the aim of this study was to investigate the role of LAIR1 in the immune microenvironment of hepatocellular carcinoma (HCC) to seek the novel therapeutic discoveries. METHODS: Tumor Immune Dysfunction and Exclusion database was used to predict the response of LAIR1 expression to immune checkpoint blockade. CD8+ T cells were co-cultured with HCC cells, and the killing efficiency of leukocytes on HCC cells was detected by flow cytometry. Flow cytometry was also used to detect the expression of inhibitory receptors. In addition, Western blot, immunofluorescence, and nucleus/cytoplasm fractionation experiments were performed to explore the molecular mechanisms by which LAIR1 created a suppressive tumor microenvironment. RESULTS: LAIR1 expression in HCC was associated with worse immune prognosis and T-cell dysfunction. HCC cells overexpressing LAIR1 co-cultured with CD8+ T cells induced exhaustion of latter. Mechanism studies indicated that LAIR1 in HCC cells up-regulated the phosphorylation of ß-catenin by inducing the phosphorylation of GSK-3ß, leading to the impairment of the expression and the nuclear localization signal of ß-catenin. Low ß-catenin expression and nuclear localization signal inhibited MYC-mediated PD-L1 expression. Therefore, PD-L1 up-regulated by LAIR1 caused the exhaustion of infiltrating CD8+ T cells in HCC, which aggravated the malignant progression of HCC. CONCLUSION: LAIR1 increased PD-L1 expression through the GSK-3ß/ß-catenin/MYC/PD-L1 pathway and promoted immune evasion of HCC cells. Targeted inhibition of LAIR1 helped to enhance the immune killing effect of CD8+ T cells in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Glycogen Synthase Kinase 3 beta/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , B7-H1 Antigen/metabolism , beta Catenin/metabolism , Nuclear Localization Signals/metabolism , Cell Line, Tumor , Tumor Microenvironment
18.
Adv Sci (Weinh) ; 11(7): e2305582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064168

ABSTRACT

Formamidine lead triiodide (FAPbI3 ) perovskites have attracted increasing interest for photovoltaics attributed to the optimal bandgap, high thermal stability, and the record power conversion efficiency (PCE). However, the materials still face several key challenges, such as phase transition, lattice defects, and ion migration. Therefore, external ions (e.g., cesium ions (Cs+ )) are usually introduced to promote the crystallization and enhance the phase stability. Nevertheless, the doping of Cs+ into the A-site easily leads to lattice compressive strain and the formation of pinholes. Herein, trioctylphosphine oxide (TOPO) is introduced into the precursor to provide tensile strain outside the perovskite lattice through intermolecular forces. The special strain compensation strategy further improves the crystallization of perovskite and inhibits the ion migration. Moreover, the TOPO molecule significantly passivates grain boundaries and undercoordinated Pb2+ defects via the forming of P═O─Pb bond. As a result, the target solar cell devices with the synergistic effect of Cs+ and TOPO additives have achieved a significantly improved PCE of 22.71% and a high open-circuit voltage of 1.16 V (voltage deficit of 0.36 V), with superior stability under light exposure, heat, or humidity conditions.

19.
Microbiol Spectr ; 12(1): e0286023, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38032223

ABSTRACT

IMPORTANCE: Hepatitis B virus (HBV)-specific CD8+ T cells play a central role in the clearance of virus and HBV-related liver injury. Acute infection with HBV induces a vigorous, multifunctional CD8+ T cell response, whereas chronic one exhibits a weaker response. Our study elucidated HBV-specific T cell responses in terms of viral abundance rather than the timing of infection. We showed that in the premalignant stage, the degree of impaired T cell function was not synchronized with the viral surface antigen, which was attributed the liver's tolerance to the virus. However, after the development of hepatocellular carcinoma, T cell exhaustion was inevitable, and it was marked by the exhaustion of the signature transcription factor TOX.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus , Hepatitis B, Chronic/pathology , CD8-Positive T-Lymphocytes , Antigens, Viral
20.
J Ethnopharmacol ; 322: 117584, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38104874

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver injury (CLI) is a pathologic process with the impairment of liver and bile secretion and excretion, resulting in an excessive accumulation of bile acids within the liver, which leads to damage to both bile ducts and hepatocytes. This process is often accompanied by inflammation. Cucumis melo L is a folk traditional herb for the treatment of cholestasis. Cucurbitacin B (CuB), an important active ingredient in Cucumis melo L, has significant anti-inflamamatory effects and plays an important role in diseases such as neuroinflammation, skin inflammation, and chronic hepatitis. Though numerous studies have confirmed the significant therapeutic effect of CuB on liver diseases, the impact of CuB on CLI remains uncertain. Consequently, the objective of this investigation is to elucidate the therapeutic properties and potential molecular mechanisms underlying the effects of CuB on CLI. AIM OF THE STUDY: The aim of this paper was to investigate the potential protective mechanism of CuB against CLI. METHODS: First, the corresponding targets of CuB were obtained through the SwissTargetPrediction and SuperPre online platforms. Second, the DisGeNET database, GeneCards database, and OMIM database were utilized to screen therapeutic targets for CLI. Then, protein-protein interaction (PPI) was determined using the STRING 11.5 data platform. Next, the OmicShare platform was employed for the purpose of visualizing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The molecular docking technique was then utilized to evaluate the binding affinity existing between potential targets and CuB. Subsequently, the impacts of CuB on the LO2 cell injury model induced by Lithocholic acid (LCA) and the CLI model induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) were determined by evaluating inflammation in both in vivo and in vitro settings. The potential molecular mechanism was explored by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) techniques. RESULTS: A total of 122 CuB targets were collected and high affinity targets were identified through the PPI network, namely TLR4, STAT3, HIF1A, and NFKB1. GO and KEGG analyses indicated that the treatment of CLI with CuB chiefly involved the inflammatory pathway. In vitro study results showed that CuB alleviated LCA-induced LO2 cell damage. Meanwhile, CuB reduced elevated AST and ALT levels and the release of inflammatory factors in LO2 cells induced by LCA. In vivo study results showed that CuB could alleviate DDC-induced pathological changes in mouse liver, inhibit the activity of serum transaminase, and suppress the liver and systemic inflammatory reaction of mice. Mechanically, CuB downregulated the IL-6, STAT3, and HIF-1α expression and inhibited STAT3 phosphorylation. CONCLUSION: By combining network pharmacology with in vivo and in vitro experiments, the results of this study suggested that CuB prevented the inflammatory response by inhibiting the IL-6/STAT3/HIF-1α signaling pathway, thereby demonstrating potential protective and therapeutic effects on CLI. These results establish a scientific foundation for the exploration and utilization of natural medicines for CLI.


Subject(s)
Cholestasis , Cucumis melo , Drugs, Chinese Herbal , Triterpenes , Animals , Mice , Interleukin-6 , Molecular Docking Simulation , Network Pharmacology , Liver , Cholestasis/chemically induced , Cholestasis/drug therapy , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...