Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 838(Pt 2): 155844, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35561909

ABSTRACT

Compared with other factors influencing vegetation patterns, such as light and temperature, precipitation has relatively large variability, especially on the Qinghai-Tibet Plateau (QTP), where the natural environment is extremely fragile and sensitive. However, the impact of precipitation regimes, rather than precipitation amount, on vegetation has seldom been revealed. This study characterised the precipitation regimes by both the amount and temporal distribution of precipitation and zoned the QTP as different precipitation regimes accordingly. The response of vegetation to such precipitation regimes was then investigated. The results indicate that the vegetation patterns are quite consistent with zoning, that is, there is a certain type or a few dominant types of vegetation in each sub-region divided by the precipitation regimes. The areas where the precipitation became more uniform within a year were concentrated in grassland and bare land, which benefits the restoration and improvement of the ecological environment of the plateau. The increase in precipitation variability in the south-eastern part of the plateau may lead to natural disasters such as floods and mudslides. This study provides a novel perspective to understand the distribution of vegetation patterns.


Subject(s)
City Planning , Climate Change , Environment , Temperature , Tibet
2.
Environ Pollut ; 266(Pt 3): 115133, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32693305

ABSTRACT

Facing serious air pollution problems, the Chinese government has taken numerous measures to prevent and control air pollution. Understanding the sources of pollutants is crucial to the prevention of air pollution. Using numerical simulation method, this study analysed the contributions of the total local emissions and local emissions from different sectors (such as industrial, traffic, resident, agricultural, and power plant emissions) to PM2.5 concentration, backward trajectory, and potential source regions in Tangshan, a typical heavy industrial city in north China. The impact of multi-scale meteorological conditions on source apportionment was investigated. From October 2016 to March 2017, total local emissions accounted for 46.0% of the near-surface PM2.5 concentration. In terms of emissions from different sectors, local industrial emissions which accounted for 23.1% of the near-surface PM2.5 concentration in Tangshan, were the most important pollutant source. Agricultural emissions were the second most important source, accounting for 10.3% of the near-surface PM2.5 concentration. The contributions of emissions from power plants, traffic, residential sources were 2.0%, 3.0%, and 7.2%, respectively. The contributions of total local emissions and emissions from different sectors depended on multi-scale meteorological conditions, and static weather significantly enhanced the contribution of regional transport to the near-surface PM2.5 concentration. Eight cluster backward trajectories were identified for Tangshan. The PM2.5 concentration for the 8 cluster trajectories significantly differed. The near-surface PM2.5 in urban Tangshan (receptor point) was mainly from the local emissions, and another important potential source region was Tianjin. The results of the source apportionment suggested the importance of joint prevention and control of air pollution in some areas where cities or industrial regions are densely distributed.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring , Particulate Matter/analysis
3.
Science ; 315(5817): 1396-8, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17347436

ABSTRACT

Particulate air pollution has been suggested as the cause of the recently observed decreasing trends of 10 to 25% in the ratio between hilly and upwind lowland precipitation, downwind of urban and industrial areas. We quantified the dependence of this ratio of the orographic-precipitation enhancement factor on the amounts of aerosols composed mostly of pollution in the free troposphere, based on measurements at Mt. Hua near Xi'an, in central China. The hilly precipitation can be decreased by 30 to 50% during hazy conditions, with visibility of less than 8 kilometers at the mountaintop. This trend shows the role of air pollution in the loss of significant water resources in hilly areas, which is a major problem in China and many other areas of the world.

SELECTION OF CITATIONS
SEARCH DETAIL
...