Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Traumatol ; 27(1): 11-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052701

ABSTRACT

Tendinopathies are chronic diseases of an unknown etiology and associated with inflammation. Mesenchymal stem cells (MSCs) have emerged as a viable therapeutic option to combat the pathological progression of tendinopathies, not only because of their potential for multidirectional differentiation and self-renewal, but also their excellent immunomodulatory properties. The immunomodulatory effects of MSCs are increasingly being recognized as playing a crucial role in the treatment of tendinopathies, with MSCs being pivotal in regulating the inflammatory microenvironment by modulating the immune response, ultimately contributing to improved tissue repair. This review will discuss the current knowledge regarding the application of MSCs in tendinopathy treatments through the modulation of the immune response.


Subject(s)
Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/physiology , Inflammation , Cell Differentiation
2.
Neuroscience ; 505: 34-50, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36208707

ABSTRACT

Defective mitophagy and mitochondrial dysfunction have been linked to aging and Alzheimer's disease (AD). ß2-Adrenergic receptor (ADRB2) is critical for mitochondrial and cognitive function. However, researchers have not clearly determined whether ADRB2 activation ameliorates defective mitophagy and cognitive deficits in individuals with AD. Here, we observed that the activation of ADRB2 by clenbuterol (Clen, ADRB2 agonist, 2 mg/kg/day) ameliorated amyloid-ß-induced (Aß1-42 bilateral intracerebral infusion, 2 µl, 5 µg/µl) memory deficits. Activation of ADRB2 also attenuated Aß-induced mitochondrial dysfunction, as revealed by increased ATP levels, mitochondrial membrane potential (MMP/Δψm) and complex I activity. Further studies revealed that ADRB2 activation restored mitophagy deficits, as revealed by the increased light chain 3 (LC3)-II/LC3-I ratio, Atg5 levels, and Atg7 levels and decreased p62 levels, along with the upregulation of PTEN-induced putative kinase 1 (PINK1), Parkin and NAD+ levels. Activation of ADRB2 rescued Aß-induced oxidative stress and neuronal death. ADRB2 activation also attenuated Aß-induced tau hyperphosphorylation by regulating glycogen synthase kinase-3ß expression in the hippocampus. Finally, we established that Clen improved mitophagy and attenuated mitochondrial dysfunction, and tau pathology in mice by activating the ADRB2/Akt/PINK1 signaling pathway. Conversely, the inhibition of ADRB2 by propranolol (ßAR antagonist, 10 µM) blocked the Clen-mediated improvements in pathological changes in N2a cells. The results from the present study indicate that ADRB2 activation may be a therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Mitophagy , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Signal Transduction , Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...