Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(7): 11228-11242, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473071

ABSTRACT

The modeling of the near-field interaction in the scattering-type scanning near-field optical microscope (s-SNOM) is rapidly advancing, although an accurate yet versatile modeling framework that can be easily adapted to various complex situations is still lacking. In this work, we propose a time-efficient numerical scheme in the quasi-electrostatic limit to capture the tip-sample interaction in the near field. This method considers an extended tip geometry, which is a significant advantage compared to the previously reported method based on the point-dipole approximation. Using this formalism, we investigate, among others, nontrivial questions such as uniaxial and biaxial anisotropy in the near-field interaction, the relationship between various experimental parameters (e.g. tip radius, tapping amplitude, etc.), and the tip-dependent spatial resolution. The demonstrated method further sheds light on the understanding of the contrast mechanism in s-SNOM imaging and spectroscopy, while also representing a valuable platform for future quantitative analysis of the experimental observations.

2.
ACS Omega ; 7(10): 8651-8664, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35309467

ABSTRACT

Colloidal particle-stabilized emulsions have recently gained increasing interest as delivery systems for essential oils. Despite the use of silica particles in food and pharmaceutical applications, the formation and release of hydrophilic and hydrophobic silica particle-stabilized emulsions are still not well studied. Thus, in this study, the structures of hydrophilic (A200, A380, 244FP, and 3150) and hydrophobic (R202 and R106) silica were deeply characterized using the solid state, contact angle, and other properties that could affect the formation of emulsions. Following that, Mosla chinensis essential oil emulsions were stabilized with different types of silica, and their characteristics, particularly their release behavior, were studied. Fick's second law was used to investigate the mechanism of release. Additionally, six mathematical models were employed to assess the experimental data of release: zero-order, first-order, Higuchi, Hixson-Crowell, Peppas, and Page models. The release mechanism of essential oils demonstrated that diffusion was the dominant mechanism, and the fitting results for the release kinetics confirmed that the release profiles were governed by the Higuchi model. The contact angle and specific surface area were the key properties that affect the release of essential oils from emulsions. Hydrophilic A200 was found to be capable of delivering essential oils more efficiently, and silica particles could be extended to achieve the controlled release of bioactives. This study showed that understanding the impact of silica particles on the release behavior provided the basis for modulating and mapping material properties to optimize the performance of emulsion products.

3.
Nat Commun ; 13(1): 1465, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35304465

ABSTRACT

Due to the two-dimensional character of graphene, the plasmons sustained by this material have been invariably studied in supported samples so far. The substrate provides stability for graphene but often causes undesired interactions (such as dielectric losses, phonon hybridization, and impurity scattering) that compromise the quality and limit the intrinsic flexibility of graphene plasmons. Here, we demonstrate the visualization of plasmons in suspended graphene at room temperature, exhibiting high-quality factor Q~33 and long propagation length > 3 µm. We introduce the graphene suspension height as an effective plasmonic tuning knob that enables in situ change of the dielectric environment and substantially modulates the plasmon wavelength, propagation length, and group velocity. Such active control of micrometer plasmon propagation facilitates near-unity-order modulation of nanoscale energy flow that serves as a plasmonic switch with an on-off ratio above 14. The suspended graphene plasmons possess long propagation length, high tunability, and controllable energy transmission simultaneously, opening up broad horizons for application in nano-photonic devices.

4.
Opt Express ; 29(24): 39648-39668, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809324

ABSTRACT

The scattering-type scanning near-field optical microscope (s-SNOM) has emerged as a powerful tool for resolving nanoscale inhomogeneities in laterally heterogeneous samples. However, most analytical models used to predict the scattering near-field signals are assuming homogenous landscapes (bulk materials), resulting in inconsistencies when applied to samples with more complex configurations. In this work, we combine the point-dipole model (PDM) to the finite-element method (FEM) to account for the lateral and vertical heterogeneities while keeping the computation time manageable. Full images, spectra, or hyperspectral line profiles can be simulated by calculating the self-consistent dipole radiation demodulated at higher harmonics of the tip oscillation, mimicking real experimental procedures. Using this formalism, we clarify several important yet puzzling experimental observations in near-field images on samples with rich typography and complex material compositions, heterostructures of two-dimensional material flakes, and plasmonic antennas. The developed method serves as a basis for future investigations of nano-systems with nontrivial topography.

5.
ACS Nano ; 15(11): 18182-18191, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34714043

ABSTRACT

Deep learning (DL) is an emerging analysis tool across the sciences and engineering. Encouraged by the successes of DL in revealing quantitative trends in massive imaging data, we applied this approach to nanoscale deeply subdiffractional images of propagating polaritonic waves in complex materials. Utilizing the convolutional neural network (CNN), we developed a practical protocol for the rapid regression of images that quantifies the wavelength and the quality factor of polaritonic waves. Using simulated near-field images as training data, the CNN can be made to simultaneously extract polaritonic characteristics and material parameters in a time scale that is at least 3 orders of magnitude faster than common fitting/processing procedures. The CNN-based analysis was validated by examining the experimental near-field images of charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Our work provides a general framework for extracting quantitative information from images generated with a variety of scanning probe methods.

6.
Adv Mater ; 33(39): e2103000, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34397123

ABSTRACT

The competing and non-equilibrium phase transitions, involving dynamic tunability of cooperative electronic and magnetic states in strongly correlated materials, show great promise in quantum sensing and information technology. To date, the stabilization of transient states is still in the preliminary stage, particularly with respect to molecular electronic solids. Here, a dynamic and cooperative phase in potassium-7,7,8,8-tetracyanoquinodimethane (K-TCNQ) with the control of pulsed electromagnetic excitation is demonstrated. Simultaneous dynamic and coherent lattice perturbation with 8 ns pulsed laser (532 nm, 15 MW cm-2 , 10 Hz) in such a molecular electronic crystal initiates a stable long-lived (over 400 days) conducting paramagnetic state (≈42 Ωcm), showing the charge-spin bistability over a broad temperature range from 2 to 360 K. Comprehensive noise spectroscopy, in situ high-pressure measurements, electron spin resonance (ESR), theoretical model, and scanning tunneling microscopy/spectroscopy (STM/STS) studies provide further evidence that such a transition is cooperative, requiring a dedicated charge-spin-lattice decoupling to activate and subsequently stabilize nonequilibrium phase. The cooperativity triggered by ultrahigh-strain-rate (above 106 s- 1 ) pulsed excitation offers a collective control toward the generation and stabilization of strongly correlated electronic and magnetic orders in molecular electronic solids and offers unique electro-magnetic phases with technological promises.

7.
Nat Commun ; 12(1): 2649, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976184

ABSTRACT

Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators.

8.
Opt Express ; 27(10): 13611-13623, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163822

ABSTRACT

In this letter, we report optical pump terahertz (THz) near-field probe (n-OPTP) and optical pump THz near-field emission (n-OPTE) experiments of graphene/InAs heterostructures. Near-field imaging contrasts between graphene and InAs using these newly developed techniques as well as spectrally integrated THz nano-imaging (THz s-SNOM) are systematically studied. We demonstrate that in the near-field regime (λ/6000), a single layer of graphene is transparent to near-IR (800 nm) optical excitation and completely "screens" the photo-induced far-infrared (THz) dynamics in its substrate (InAs). Our work reveals unique frequency-selective ultrafast dynamics probed at the near field. It also provides strong evidence that n-OPTE nanoscopy yields contrast that distinguishes single-layer graphene from its substrate.

9.
Nat Commun ; 8(1): 1471, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29133779

ABSTRACT

Most van der Waals crystals present highly anisotropic optical responses due to their strong in-plane covalent bonding and weak out-of-plane interactions. However, the determination of the polarization-dependent dielectric constants of van der Waals crystals remains a nontrivial task, since the size and dimension of the samples are often below or close to the diffraction limit of the probe light. In this work, we apply an optical nano-imaging technique to determine the anisotropic dielectric constants in representative van der Waals crystals. Through the study of both ordinary and extraordinary waveguide modes in real space, we are able to quantitatively determine the full dielectric tensors of nanometer-thin molybdenum disulfide and hexagonal boron nitride microcrystals, the most-promising van der Waals semiconductor and dielectric. Unlike traditional reflection-based methods, our measurements are reliable below the length scale of the free-space wavelength and reveal a universal route for characterizing low-dimensional crystals with high anisotropies.

SELECTION OF CITATIONS
SEARCH DETAIL
...