Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nanomaterials (Basel) ; 9(10)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597260

ABSTRACT

Discovery of a potent drug nanocarrier is crucial for cancer therapy in which drugs often face challenges in penetrating efficiently into solid tumours. Here, biosynthesis of silver nanoparticles (AgNPs) using a waste material, Garcinia mangostana (GM) fruit peel extract is demonstrated. The best condition for AgNPs synthesis was with 0.5 g of peel extract, 7.5 mM silver nitrate at 45 °C, ~pH 4 for 16 h. The synthesized AgNPs were spherical and 32.7 ± 5.7 nm in size. To test its efficiency to be used as drug carrier, plant-based drug, protocatechuic acid (PCA) was used as a test drug. AgNPs loaded with PCA (AgPCA) resulted in 80% of inhibition at 15.6 µg/mL as compared to AgNPs which only killed 5% of HCT116 colorectal cells at same concentration. The IC50 of AgNPs and AgPCA for HCT116 were 40.2 and 10.7 µg/mL, respectively. At 15.6 µg/mL, AgPCA was not toxic to the tested colon normal cells, CCD112. Ag-based drug carrier could also potentially reduce the toxicity of loaded drug as the IC50 of PCA alone (148.1 µg/mL) was higher than IC50 of AgPCA (10.7 µg/mL) against HCT116. Further, 24-h treatment of 15.6 µg/mL AgPCA resulted in loss of membrane potential in the mitochondria of HCT116 cells and increased level of reaction oxygen species (ROS). These could be the cellular killing mechanisms of AgPCA. Collectively, our findings show the synergistic anticancer activity of AgNPs and PCA, and its potential to be used as a potent anticancer drug nanocarrier.

2.
Adv Virol ; 2019: 6464521, 2019.
Article in English | MEDLINE | ID: mdl-31049064

ABSTRACT

Epstein-Barr virus (EBV) is one of the common human herpesvirus types in the world. EBV is known to infect more than 95% of adults in the world. The virus mainly infects B lymphocytes and could immortalize and transform the cells into EBV-bearing lymphoblastoid cell lines (LCLs). Limited studies have been focused on characterizing the surface marker expression of the immortalized LCLs. This study demonstrates the generation of 15 LCLs from sixteen rheumatoid arthritis (RA) patients and a healthy volunteer using B95-8 marmoset-derived EBV. The success rate of LCL generation was 88.23%. All CD19+ LCLs expressed CD23 (16.94-58.9%) and CD27 (15.74-80.89%) on cell surface. Our data demonstrated two distinct categories of LCLs (fast- and slow-growing) (p<0.05) based on their doubling time. The slow-growing LCLs showed lower CD23 level (35.28%) compared to fast-growing LCLs (42.39%). In contrast, the slow-growing LCLs showed higher percentage in both CD27 alone and CD23+CD27+ in combination. Overall, these findings may suggest the correlations of cellular CD23 and CD27 expression with the proliferation rate of the generated LCLs. Increase expression of CD23 may play a role in EBV immortalization of B-cells and the growth and maintenance of the EBV-transformed LCLs while CD27 expression might have inhibitory effects on LCL proliferation. Further investigations are warranted to these speculations.

3.
Cells ; 7(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304822

ABSTRACT

Rheumatoid arthritis (RA) is a chronic, autoimmune, systemic, inflammatory disorder that affects synovial joints, both small and large joints, in a symmetric pattern. This disorder usually does not directly cause death but significantly reduces the quality of life and life expectancy of patients if left untreated. There is no cure for RA but, patients are usually on long-term disease modifying anti-rheumatic drugs (DMARDs) to suppress the joint inflammation, to minimize joint damage, to preserve joint function, and to keep the disease in remission. RA is strongly associated with various immune cells and each of the cell type contributes differently to the disease pathogenesis. Several types of immunomodulatory molecules mainly cytokines secreted from immune cells mediate pathogenesis of RA, hence complicating the disease treatment and management. There are various treatments for RA depending on the severity of the disease and more importantly, the patient's response towards the given drugs. Early diagnosis of RA and treatment with (DMARDs) are known to significantly improve the treatment outcome of patients. Sensitive biomarkers are crucial in early detection of disease as well as to monitor the disease activity and progress. This review aims to discuss the pathogenic role of various immune cells and immunological molecules in RA. This review also highlights the importance of understanding the immune cells in treating RA and in exploring novel biomarkers.

4.
Molecules ; 23(6)2018 06 06.
Article in English | MEDLINE | ID: mdl-29882775

ABSTRACT

Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs' roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles , Oxides/chemistry , Plants/chemistry , Anti-Bacterial Agents/chemistry , Conservation of Natural Resources , Microbial Sensitivity Tests
5.
J Pathog ; 2017: 7349268, 2017.
Article in English | MEDLINE | ID: mdl-29464124

ABSTRACT

Epstein-Barr virus (EBV) is a pathogen that infects more than 90% of global human population. EBV primarily targets B-lymphocytes and epithelial cells while some of them infect monocyte/macrophage, T-lymphocytes, and dendritic cells (DCs). EBV infection does not cause death by itself but the infection has been persistently associated with certain type of cancers such as nasopharyngeal carcinoma (NPC), Burkitt's lymphoma (BL), and Hodgkin's lymphoma (HL). Recent findings have shown promise on targeting EBV proteins for cancer therapy by immunotherapeutic approach. Some studies have also shown the success of adopting EBV-based therapeutic vaccines for the prevention of EBV-associated cancer particularly on NPC. In-depth investigations are in progress to refine the current therapeutic and vaccination strategies. In present review, we discuss the highly potential EBV targets for NPC immunotherapy and therapeutic vaccine development as well as addressing the underlying challenges in the process of bringing the therapy and vaccination from the bench to bedside.

SELECTION OF CITATIONS
SEARCH DETAIL
...