Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 775: 145775, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33611183

ABSTRACT

With the rapid degradation of coral reefs due to global warming and anthropogenic impacts, relatively high-latitude areas, such as the northern South China Sea (SCS), are likely to become refuges for tropical coral species. Here we investigated the genetic features and adaptability of one dominant scleractinian coral species, Turbinaria peltata, in the northern SCS. A total of 81 samples from 5 sites were studied to explore potential mechanisms of adaptability to environmental stress as a result of climate change. Ten microsatellite markers developed in this study, one nuclear gene (internal transcribed spacer, ITS), and one mitochondrial gene (mitochondrial cytochrome oxidase subunit I gene, mtDNA COI) were used. Our results indicated that the genetic diversity of T. peltata in the northern SCS is low (Ar = 1.403-2.011, Ho = 0.105-0.248, He = 0.187-0.421) with the lowest in Dongfang population (DF) (Ar = 1.403, Ho = 0.22, He = 0.187). These results indicate that T. peltata has insufficient genetic adaptability and may unable to handle increasingly complex global changes. A significantly moderate genetic differentiation was observed among T. peltata populations (ΦST = 0.167), in addition to a high genetic differentiation between DF and other populations (FST = 0.272-0.536 > 0.25). The DF population near a fishing port was exposed to severe anthropogenic environmental stress, which may drive the extraordinarily high genetic differentiation between DF and other populations. Furthermore, the Mantel test results showed that the genetic differentiation of the other four populations was strongly correlated with the average sea surface temperature (SST) (R2 = 0.82, Mantel test P < 0.05) and geographical distance (R2 = 0.57, Mantel test P < 0.05). Our results suggest that the genetic structure of T. peltata in the relatively high-latitude of the SCS was significantly affected by average SST, geographical isolation, and anthropogenic activities. These findings provide a theoretical foundation for the protection of relatively high-latitude coral reefs.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , China , Climate Change , Coral Reefs , Genetic Structures
3.
Mar Pollut Bull ; 160: 111168, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33181914

ABSTRACT

Climate Change solutions include CO2 extraction from atmosphere and water with burial by living habitats in sediment/soil. Nowhere on the planet are blue carbon plants which carry out massive carbon extraction and permanent burial more intensely concentrated than in SE Asia. For the first time we make a national and total inventory of data to date for "blue carbon" buried from mangroves and seagrass and delineate the constraints. For an area across Southeast Asia of approximately 12,000,000 km2, supporting mangrove forests (5,116,032 ha) and seagrass meadows (6,744,529 ha), we analyzed the region's current blue carbon stocks. This estimate was achieved by integrating the sum of estuarine in situ carbon stock measurements with the extent of mangroves and seagrass across each nation, then summed for the region. We found that mangroves ecosystems regionally supported the greater amount of organic carbon (3095.19Tg Corg in 1st meter) over that of seagrass (1683.97 Tg Corg in 1st meter), with corresponding stock densities ranging from 15 to 2205 Mg ha-1 and 31.3 to 2450 Mg ha-1 respectively, a likely underestimate for entire carbon including sediment depths. The largest carbon stocks are found within Indonesia, followed by the Philippines, Papua New Guinea, Myanmar, Malaysia, Thailand, Tropical China, Viet-Nam, and Cambodia. Compared to the blue carbon hotspot of tropical/subtropical Gulf of Mexico's total carbon stock (480.48 Tg Corg), Southeast Asia's greater mangrove-seagrass stock density appears a more intense Blue Carbon hotspot (4778.66 Tg Corg). All regional Southeast Asian nation states should assist in superior preservation and habitat restoration plus similar measures in the USA & Mexico for the Gulf of Mexico, as apparently these form two of the largest tropical carbon sinks within coastal waters. We hypothesize it is SE Asia's regionally unique oceanic-geologic conditions, placed squarely within the tropics, which are largely responsible for this blue carbon hotspot, that is, consistently high ambient light levels and year-long warm temperatures, together with consistently strong inflow of dissolved carbon dioxide and upwelling of nutrients across the shallow geological plates.


Subject(s)
Carbon Sequestration , Ecosystem , Asia, Southeastern , China , Gulf of Mexico , Indonesia , Malaysia , Papua New Guinea , Philippines , Thailand , Vietnam , Wetlands
4.
Mar Pollut Bull ; 160: 111544, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33181916

ABSTRACT

Seagrass longevity up to 47 years in well-restored, well-sited seagrass restorations are demonstrated from 253 trials at 83 regional sites in tropical and subtropical portions of three oceans (Atlantic, Pacific, Indian Oceans). These trials include over 3.04 million planted units into 306.3 ha. Approximately 12% of the total global tropical restored seagrass by Van Katwijk, Thorhaug et al. (2016) calculations from 1786 trials are included. Almost all projects herein reviewed persisted since date of planting except several cases with harsh anthropogenic impact or forceful natural events in first post-planting months. The oldest tropical/subtropical restoration continually observed is 47 yrs, many are 35 yrs. An array of observed and/or measured restored services accompanied these. This review may provide informational background for government resource managers, legislators, scientists, and citizens concerning tropical/subtropical seagrass longevity. This data from these trials may substantiate future seagrass restoration investments. Public outreach, national & regional government training,and outreach occurred, needing continuation.


Subject(s)
Ecosystem , Longevity , Indian Ocean
5.
Biol Lett ; 15(5): 20180745, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31064310

ABSTRACT

Valuing sedimentary 'blue carbon' stocks of seagrass meadows requires exclusion of allochthonous recalcitrant forms of carbon, such as black carbon (BC). Regression models constructed across a Southeast Asian tropical estuary predicted that carbon stocks within the sandy meadows of coastal embayments would support a modest but not insignificant amount of BC. We tested the prediction across three coastal meadows of the same region: one patchy meadow located close to a major urban centre and two continuous meadows contained in separate open embayments of a rural marine park; all differed in fetch and species. The BC/total organic carbon (TOC) fractions in the urban and rural meadows with small canopies were more than double the predicted amounts, 28 ± 1.6% and 36 ± 1.5% (±95% confidence intervals), respectively. The fraction in the rural large-canopy meadow remained comparable to the other two meadows, 26 ± 4.9% (±95% confidence intervals) but was half the amount predicted, likely owing to confounding of the model. The relatively high BC/TOC fractions were explained by variability across sites of BC atmospheric supply, an increase in loss of seagrass litter close to the exposed edges of meadows and sediment resuspension across the dispersed patchy meadow.


Subject(s)
Carbon , Geologic Sediments , Asia, Southeastern , Estuaries
SELECTION OF CITATIONS
SEARCH DETAIL
...