Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Med ; 56(6): 1263-1271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871817

ABSTRACT

MicroRNAs (miRNAs) are pivotal regulators of gene expression and are involved in biological processes spanning from early developmental stages to the intricate process of aging. Extensive research has underscored the fundamental role of miRNAs in orchestrating eukaryotic development, with disruptions in miRNA biogenesis resulting in early lethality. Moreover, perturbations in miRNA function have been implicated in the aging process, particularly in model organisms such as nematodes and flies. miRNAs tend to be clustered in vertebrate genomes, finely modulating an array of biological pathways through clustering within a single transcript. Although extensive research of their developmental roles has been conducted, the potential implications of miRNA clusters in regulating aging remain largely unclear. In this review, we use the Mir-23-27-24 cluster as a paradigm, shedding light on the nuanced physiological functions of miRNA clusters during embryonic development and exploring their potential involvement in the aging process. Moreover, we advocate further research into the intricate interplay among miRNA clusters, particularly the Mir-23-27-24 cluster, in shaping the regulatory landscape of aging.


Subject(s)
Aging , Gene Expression Regulation, Developmental , MicroRNAs , Multigene Family , MicroRNAs/genetics , Animals , Aging/genetics , Humans , Embryonic Development/genetics
2.
Membranes (Basel) ; 11(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34436354

ABSTRACT

Extracellular vesicles (EVs) are membranous nanoparticles naturally released from living cells which can be found in all types of body fluids. Recent studies found that cancer cells secreted EVs containing the unique set of biomolecules, which give rise to a distinctive absorbance spectrum representing its cancer type. In this study, we aimed to detect the medium EVs (200-300 nm) from the urine of prostate cancer patients using Fourier transform infrared (FTIR) spectroscopy and determine their association with cancer progression. EVs extracted from 53 urine samples from patients suspected of prostate cancer were analyzed and their FTIR spectra were preprocessed for analysis. Characterization of morphology, particle size and marker proteins confirmed that EVs were successfully isolated from urine samples. Principal component analysis (PCA) of the EV's spectra showed the model could discriminate prostate cancer with a sensitivity of 59% and a specificity of 81%. The area under curve (AUC) of FTIR PCA model for prostate cancer detection in the cases with 4-20 ng/mL PSA was 0.7, while the AUC for PSA alone was 0.437, suggesting the analysis of urinary EVs described in this study may offer a novel strategy for the development of a noninvasive additional test for prostate cancer screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...