Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Chem Biol ; 30(12): 1542-1556.e9, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37714153

ABSTRACT

Identification of cysteines with high oxidation susceptibility is important for understanding redox-mediated biological processes. In this report, we report a chemical proteomic strategy that finds cysteines with high susceptibility to S-glutathionylation. Our proteomic strategy, named clickable glutathione-based isotope-coded affinity tag (G-ICAT), identified 1,518 glutathionylated cysteines while determining their relative levels of glutathionylated and reduced forms upon adding hydrogen peroxide. Among identified cysteines, we demonstrated that CTNND1 (p120) C692 has high susceptibility to glutathionylation. Also, p120 wild type (WT), compared to C692S, induces its dissociation from E-cadherin under oxidative stress, such as glucose depletion. p120 and E-cadherin dissociation correlated with E-cadherin destabilization via its proteasomal degradation. Lastly, we showed that p120 WT, compared to C692S, increases migration and invasion of MCF7 cells under glucose depletion, supporting a model that p120 C692 glutathionylation increases cell migration and invasion by destabilization of E-cadherin, a core player in cell-cell adhesion.


Subject(s)
Catenins , Delta Catenin , Humans , Catenins/metabolism , Proteomics , Cadherins/metabolism , Cell Movement , Glucose
2.
J Am Chem Soc ; 145(12): 6811-6822, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36930461

ABSTRACT

The reversible acetylation of histone lysine residues is controlled by the action of acetyltransferases and deacetylases (HDACs), which regulate chromatin structure and gene expression. The sirtuins are a family of NAD-dependent HDAC enzymes, and one member, sirtuin 6 (Sirt6), influences DNA repair, transcription, and aging. Here, we demonstrate that Sirt6 is efficient at deacetylating several histone H3 acetylation sites, including its canonical site Lys9, in the context of nucleosomes but not free acetylated histone H3 protein substrates. By installing a chemical warhead at the Lys9 position of histone H3, we trap a catalytically poised Sirt6 in complex with a nucleosome and employ this in cryo-EM structural analysis. The structure of Sirt6 bound to a nucleosome reveals extensive interactions between distinct segments of Sirt6 and the H2A/H2B acidic patch and nucleosomal DNA, which accounts for the rapid deacetylation of nucleosomal H3 sites and the disfavoring of histone H2B acetylation sites. These findings provide a new framework for understanding how HDACs target and regulate chromatin.


Subject(s)
Nucleosomes , Sirtuins , Histones/chemistry , Chromatin , Sirtuins/metabolism , Acetylation , Glycosyltransferases/metabolism , Catalysis
3.
J Proteome Res ; 20(9): 4529-4542, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34382403

ABSTRACT

Ischemia reperfusion injury contributes to adverse cardiovascular diseases in part by producing a burst of reactive oxygen species that induce oxidations of many muscular proteins. Glutathionylation is one of the major protein cysteine oxidations that often serve as molecular mechanisms behind the pathophysiology associated with ischemic stress. Despite the biological significance of glutathionylation in ischemia reperfusion, identification of specific glutathionylated cysteines under ischemic stress has been limited. In this report, we have analyzed glutathionylation under oxygen-glucose deprivation (OGD) or repletion of nutrients after OGD (OGD/R) by using a clickable glutathione approach that specifically detects glutathionylated proteins. Our data find that palmitate availability induces a global level of glutathionylation and decreases cell viability during OGD/R. We have then applied a clickable glutathione-based proteomic quantification strategy, which enabled the identification and quantification of 249 glutathionylated cysteines in response to palmitate during OGD/R in the HL-1 cardiomyocyte cell line. The subsequent bioinformatic analysis found 18 glutathionylated cysteines whose genetic variants are associated with muscular disorders. Overall, our data report glutathionylated cysteines under ischemic stress that may contribute to adverse outcomes or muscular disorders.


Subject(s)
Cysteine , Proteomics , Cysteine/metabolism , Glutathione/metabolism , Humans , Ischemia , Oxidative Stress , Proteins/metabolism
4.
Chembiochem ; 21(6): 853-859, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31560820

ABSTRACT

Protein S-glutathionylation is one of the important cysteine oxidation events that regulate various redox-mediated biological processes. Despite several existing methods, there are few proteomic approaches to identify and quantify specific cysteine residues susceptible to S-glutathionylation. We previously developed a clickable glutathione approach that labels intracellular glutathione with azido-Ala by using a mutant form of glutathione synthetase. In this study, we developed a quantification strategy with clickable glutathione by using isotopically labeled heavy and light derivatives of azido-Ala, which provides the relative quantification of glutathionylated peptides in mass spectrometry-based proteomic analysis. We applied isotopically labeled clickable glutathione to HL-1 cardiomyocytes, quantifying relative levels of 1398 glutathionylated peptides upon addition of hydrogen peroxide. Importantly, we highlight elevated levels of glutathionylation on sarcomere-associated muscle proteins while validating glutathionylation of two structural proteins, α-actinin and desmin. Our report provides a chemical proteomic strategy to quantify specific glutathionylated cysteines.


Subject(s)
Alanine/chemistry , Azides/chemistry , Glutathione/chemistry , Protein S/analysis , Click Chemistry , Cysteine/chemistry , Cysteine/metabolism , Isotope Labeling , Protein S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL