Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(20): 21751-21767, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799325

ABSTRACT

The elimination of dyes discharged from industrial wastewater into water bodies is crucial due to its detrimental effects on aquatic organisms and potential carcinogenic impact on human health. Various methods are employed for dye removal, but they often fall short in completely degrading the dyes and generating large amounts of suspended solids. Hence, there is a critical need for an efficient process that can achieve complete dye degradation with minimal waste emission. Among traditional water treatment approaches, photocatalysis stands out as a promising method for degrading diverse toxic and organic pollutants present in wastewater. In this review, the heterogeneous photocatalysis process is well explained for dye removal. This comprehensive review not only provides insightful illumination on the classification of dyes but also thoroughly explains various dye removal methods and the underlying mechanisms of photocatalysis. Furthermore, factors which effect the activity of the photocatalysis process are also explained in detail. Likewise, we categorized the heterogeneous photocatalyst in three generations and observed their activity for dye removal. This review also addresses the challenges and effectiveness of this promising field. Its primary aim is to offer a comprehensive overview of the photocatalytic degradation of pollution and to explore its potential for further future applications.

2.
RSC Adv ; 13(36): 24973-24987, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37614795

ABSTRACT

Designing of non-noble, cost-effective, sustainable catalysts for water splitting is essential for hydrogen production. In this research work, ZIF-67, g-C3N4, and their composite (1, 3, 5, 6, 8 wt% g-C3N4@ZIF-67) are synthesized, and various techniques, XRD, FTIR, SEM, EDX and BET are used to examine their morphological properties for electrochemical water-splitting. The linkage of ZIF-67 with g-C3N4 synergistically improves the electrochemical kinetics. An appropriate integration of g-C3N4 in ZIF-67 MOF improves the charge transfer between the electrode and electrolyte and makes it a suitable option for electrochemical applications. In alkaline media, the composite of ZIF-67 MOF with g-C3N4 over a Ni-foam exhibits a superior catalyst activity for water splitting application. Significantly, the 3 wt% g-C3N4@ZIF67 composite material reveals remarkable results with low overpotential values of -176 mV@10 mA cm-2, 152 mV@10 mA cm-2 for HER and OER. The catalyst remained stable for 24 h without distortion. The 3 wt% composite also shows a commendable performance for overall water-splitting with a voltage yield of 1.34 v@10 mA cm-2. The low contact angle (54.4°) proves the electrocatalyst's hydrophilic nature. The results of electrochemical water splitting illustrated that 3 wt% g-C3N4@ZIF-67 is an electrically conductive, stable, and hydrophilic-nature catalyst and is suggested to be a promising candidate for electrochemical water-splitting application.

3.
ACS Omega ; 7(16): 13403-13435, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35559169

ABSTRACT

At present, plastic waste accumulation has been observed as one of the most alarming environmental challenges, affecting all forms of life, economy, and natural ecosystems, worldwide. The overproduction of plastic materials is mainly due to human population explosion as well as extraordinary proliferation in the global economy accompanied by global productivity. Under this threat, the development of benign and green alternative solutions instead of traditional disposal methods such as conversion of plastic waste materials into cherished carbonaceous nanomaterials such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), graphene, activated carbon, and porous carbon is of utmost importance. This critical review thoroughly summarizes the different types of daily used plastics, their types, properties, ways of accumulation and their effect on the environment and human health, treatment of waste materials, conversion of waste materials into carbon-based compounds through different synthetic schemes, and their utilization in energy storage devices particularly in supercapacitors, as well as future perspectives. The main purpose of this review is to help the targeted audience to design their futuristic study in this desired field by providing information about the work done in the past few years.

4.
Sci Rep ; 11(1): 13402, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183691

ABSTRACT

Present work comprehensively investigated the electrochemical response of Nickel-2 Aminoterephthalic acid Metal-Organic Framework (NiNH2BDC) and its reduced graphitic carbon (rGO) based hybrids for methanol (CH3OH) oxidation reaction (MOR) in an alkaline environment. In a thorough analysis of a solvothermally synthesized Metal-Organic Frameworks (MOFs) and its reduced graphitic carbon-based hybrids, functional groups detection was performed by FTIR, the morphological study by SEM, crystal structure analysis via XRD, and elemental analysis through XPS while electrochemical testing was accomplished by Chronoamperometry (CA), Cyclic Voltametric method (CV), Electrochemically Active Surface Area (EASA), Tafel slope (b), Electron Impedance Spectroscopy (EIS), Mass Activity, and roughness factor. Among all the fabricated composites, NiNH2BDC MOF/5 wt% rGO hybrid by possessing an auspicious current density (j) of 267.7 mA/cm2 at 0.699 V (vs Hg/HgO), a Tafel slope value of 60.8 mV dec-1, EASA value of 15.7 cm2, and by exhibiting resistance of 13.26 Ω in a 3 M CH3OH/1 M NaOH solution displays grander electrocatalytic activity as compared to state-of-the-art platinum-based electrocatalysts.

5.
RSC Adv ; 11(27): 16768-16804, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479139

ABSTRACT

The human craving for energy is continually mounting and becoming progressively difficult to gratify. At present, the world's massive energy demands are chiefly encountered by nonrenewable and benign fossil fuels. However, the development of dynamic energy cradles for a gradually thriving world to lessen fossil fuel reserve depletion and environmental concerns is currently a persistent issue for society. The discovery of copious nonconventional resources to fill the gap between energy requirements and supply is the extreme obligation of the modern era. A new emergent, clean, and robust alternative to fossil fuels is the fuel cell. Among the different types of fuel cells, the direct ethanol fuel cell (DEFCs) is an outstanding option for light-duty vehicles and portable devices. A critical tactic for obtaining sustainable energy sources is the production of highly proficient, economical and green catalysts for energy storage and conversion devices. To date, a broad range of research is available for using Pt and modified Pt-based electrocatalysts to augment the C2H5OH oxidation process. Pt-based nanocubes, nanorods, nanoflowers, and the hybrids of Pt with metal oxides such as Fe2O3, TiO2, SnO2, MnO, Cu2O, and ZnO, and with conducting polymers are extensively utilized in both acidic and basic media. Moreover, Pd-based materials, transition metal-based materials, as well as transition metal-based materials are also points of interest for researchers nowadays. This review article delivers a broad vision of the current progress of the EOR process concerning noble metals and transition metals-based materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...