Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 111(12): 2032-2043, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37560935

ABSTRACT

Oxidative stress is a destructive phenomenon that affects various cell structures including membranes, proteins, lipoproteins, lipids, and DNA. Oxidative stress and inflammation owing to lifestyle changes may lead to serious diseases such as Cancers, Gout, and Arthritis etc. These disorders can be prevented using different therapeutic strategies including nanomedicine. Biosynthesized gold nanoparticles (GNPs) because of their anti-inflammatory and antioxidant bioactivities can be key player in reversal of these ailments. This study was carried out to evaluate the anti-inflammatory and antioxidant potential of bio fabricated GNPs with Sarcococca saligna (S. saligna) extract on injured human adipose-derived Mesenchymal stem cells (hADMSCs). GNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray (EDS). Phytochemical screening of biosynthesized GNPs exhibited a significant release of polyphenols, that is, total phenolic content (TPC) and total flavonoid content (TFC). GNPs priming amended the in vitro injury caused by Monosodium Iodoacetate (MIA) as exhibited by improved cell viability, wound closure response and superoxide dismutase activity (SOD). The anti-inflammatory conduct assessed through NF-κB pathway and other associated inflammatory markers reported down-regulation of TNF-α (0.644 ± 0.045), IL-1ß (0.694 ± 0.147) and IL-6 (0.622 ± 0.112), apoptosis causing genes like Caspase-3 (0.734 ± 0.13) and BAX (0.830 ± 0.12), NF-κB pathway, p65 (0.672 ± 0.084) and p105 (0.539 ± 0.083) associated genes. High SOD activity (95 ± 5.25%) revealed by treated hADMSCs with GNPs also supported the antioxidant role of GNPs in vitro model. This study concludes that S. saligna bio fabricated GNPs priming may improve the therapeutic potential of hADMSCs against chronic inflammatory problems by regulating NF-κB pathway.

2.
PLoS One ; 16(10): e0258762, 2021.
Article in English | MEDLINE | ID: mdl-34679084

ABSTRACT

Inflammatory microenvironment after transplantation affects the proliferation and causes senescence of adipose-derived mesenchymal stem cells (hADMSCs) thus compromising their clinical efficacy. Priming stem cells with herbal extracts is considered very promising to improve their viability in the inflammatory milieu. Aesculus indica (A. indica) is used to treat many inflammatory diseases in Asia for decades. Herein, we explored the protective role of A. indica extract on human adipose-derived Mesenchymal Stem Cells (hADMSCs) against Monosodium Iodoacetate (MIA) induced stress in vitro. A. indica ameliorated the injury as depicted by significantly enhanced proliferation, viability, improved cell migration and superoxide dismutase activity. Furthermore, reduced lactate dehydrogenase activity, reactive oxygen species release, senescent and apoptotic cells were detected in A. indica primed hADMSCs. Downregulation of NF-κB pathway and associated inflammatory genes, NF-κB p65/RelA and p50/NF-κB 1, Interleukin 6 (IL-6), Interleukin 1 (IL-1ß), Tumor necrosis factor alpha (TNF-α) and matrix metalloproteinase 13 (MMP-13) were observed in A. indica primed hADMSCs as compared to stressed hADMSCs. Complementary to gene expression, A. indica priming reduced the release of transcription factor p65, inhibitory-κB kinase (IKK) α and ß, IL-1ß and TNF-α proteins expression. Our data elucidates that A. indica extract preconditioning rescued hADMSCs against oxidative stress and improved their therapeutic potential by relieving inflammation through regulation of NF-κB pathway.


Subject(s)
Aesculus/chemistry , Anti-Inflammatory Agents/pharmacology , Iodoacetic Acid/adverse effects , Mesenchymal Stem Cells/cytology , NF-kappa B/metabolism , Phytochemicals/pharmacology , Adipose Tissue/cytology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Anti-Inflammatory Agents/chemistry , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Oxidative Stress/drug effects , Phytochemicals/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
3.
Eur J Pharmacol ; 906: 174201, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34118221

ABSTRACT

Mesenchymal stem cells are known to support hepatic defense against liver fibrosis. However, the fibrosis induced oxidative microenvironment affects the proliferative, regenerative, and angiogenic properties of mesenchymal stem cells. Alpha lipoic acid (ALA) is a strong anti-oxidant which has been shown to ameliorate the adverse effects of fibrosis that otherwise can lead to severe liver problems like cirrhosis and liver failure. Here, we studied the protective role of ALA primed adipose derived stem cells (ADSCs) against carbon tetrachloride (CCl4) induced hepatotoxicity in primary hepatocytes in-vitro. Priming of ADSCs helped to abrogate the damaging effects of fibrosis induced oxidative stress as evidenced by significantly reduced levels of alkaline phosphatase (ALP), Alanine Aminotransferase (ALAT) along with decreased lactate dehydrogenase (LDH) release and improved superoxide dismutase (SOD) activity. ALA and ADSCs synergistically down-regulated the expression of Bax gene, an apoptosis regulator while enhancing cell proliferation by up-regulating the expression of Bcl2l1 gene. This treatment improved the expression of albumin (Alb), cytokeratin-8 (Ck8), and hepatic nuclear factor alpha (Hnf4α). Cytochrome P450 2E1 (Cyp2e1) and Alpha fetoprotein (Afp) were down-regulated to lessen the damage caused by CCl4 treatment. Furthermore, paracrine release of several growth factors like hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and insulin growth factor (IGF) reinforced the improved response of primary hepatocytes against CCl4 induced hepatotoxicity in the presence of ALA primed ADSCs. This study suggests that ALA priming may improve the therapeutic potential of ADSCs against chronic liver problems by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant factors heme oxygenase 1 (HO-1) and quinone acceptor oxidoreductase-1 (NQO1).


Subject(s)
Chemical and Drug Induced Liver Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Protective Agents/pharmacology , Thioctic Acid/pharmacology , Adipose Tissue/cytology , Animals , Carbon Tetrachloride/toxicity , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Coculture Techniques , Combined Modality Therapy/methods , Disease Models, Animal , Hepatocytes/drug effects , Humans , Primary Cell Culture , Protective Agents/therapeutic use , Rats , Thioctic Acid/therapeutic use
4.
Cell Biol Int ; 41(1): 51-61, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27805290

ABSTRACT

Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP+ mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl4 -induced liver fibrosis was achieved.


Subject(s)
Cell Differentiation , Hepatocytes/pathology , Liver Regeneration , Liver/injuries , Liver/pathology , Animals , Carbon Tetrachloride , Cell Lineage , Cell Survival , Cellular Microenvironment , Coculture Techniques , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...