Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 466: 133662, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309171

ABSTRACT

Discarding PET plastic (dPET) causes serious environmental pollution and enormous fossil resources waste. Processing techniques have mainly focused on the conversion of dPET into monomers, with minimal reports highlighting their transformation into high-value materials. This work intends to transform dPET into a high-performance material with potential alternative value in harsh production environments. The soft and hard segments of the thermoplastic polyester elastomeric (TPEE) molecular structure are reacted and cross-linked with dPET using a facile one-pot process, and two main polymers, (C8H4O4)n and ((C16H18O4)0.76·(C4H8O)0.24)n are generated after the reaction. Through chemical reactions between TPEE and dPET, new characteristic products and chemical bond-crossing structures are formed, while the resulting product particles or multiple TPEE particles are anchored by the high viscosity of dPET, which endows the material with superior tensile strength (34.21 MPa) and impact resistance. The glass transition temperature (Tg) of the material implies that neither the molecular chain nor the chain segments can move, while only the atoms or groups composing the molecule vibrate at their equilibrium positions. The development of this new treatment method may contribute to the reduction of environmental pollution and the improvement of the high-value conversion and utilization of dPET.

2.
ACS Omega ; 9(3): 3491-3498, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284055

ABSTRACT

For polyethylene terephthalate (PET) bottles, a material used for food packaging, light transmission and mechanical performance, particularly environmental stress cracking (ESC), are essential characteristics. For this purpose, following extrusion of PET/CaO granules, preforms were manufactured using the injection technique, and bottles were produced by a stretch-blow-molding process. With incorporation of calcium oxide (CaO), light transmittance increased by around 25%, and ESC went from 0.3 to 11 min. In addition, whereas acetaldehyde (AA) and carboxylic acid (COOH) decomposition values rose with increasing CaO content, diethylene glycol and isophthalic acid values did not significantly change. Moreover, the maximum crystallization temperature and crystallinity both exhibited an upward trend with the CaO content.

3.
ACS Omega ; 8(49): 46946-46954, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107930

ABSTRACT

Except for well-known commercial production procedures, this study demonstrates that Ta2O5 particles can be produced. Through a series of steps, highly pure Ta2O5 particles (99.45%) were produced from the raw ore. We have electrochemically detected one of the important nitrogenous compounds present in urine, "uric acid", by a Ta2O5 particle-modified carbon paste electrode (Ta2O5-MCPE) using cyclic voltammetry. The prepared electrode has shown excellent current sensitivity at a pH of 6.0 phosphate-buffered solution. We have found that 4 mg Ta2O5-MCPE has recorded the highest current sensitivity of 75.75 µA. The oxidation peak current was varied with the uric acid concentration in the range from 1 to 5 mM at 4 mg Ta2O5-MCPE. We have calculated the electrode-active surface area for a bare carbon paste electrode and 4 mg Ta2O5-MCPE using the Randles-Sevcik equation, and the values were found to be 0.0202 and 0.0450 cm2, respectively. On the other hand, the calculated values of limit of detection and limit of quantification were reported as 0.5937 × 10-8 M and 1.9791 × 10-8 M, respectively, for the prepared 4 mg Ta2O5-MCPE. The interfere studies revealed that the variation in the electrochemical signal of uric acid in the presence of different metal ions was found to be less than ±5%.

4.
Sci Rep ; 13(1): 7714, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173363

ABSTRACT

Wood fiber is a great potential supportive material for creating a new composite the phase change materials (PCM) due to its beneficial qualities, including high sorption competency, low density, enviro -friendliness, economic effectiveness, and chemical inertness. The main objective of this paper is to study the effect of using the wood fiber/eutectic mixture of stearic and capric acid on the fuel, cost, and carbon emission-saving potentials for various PCM cases. Which experiences a phase transition within the thermally pleasant temperature range of buildings, used for the building's thermal energy storing purposes and consumption cost saving. The energy performance analysis was carried out for buildings incorporated with stearic and capric acid eutectic mixture of PCM with wood fiber-based insulation material (INS) in different climate regions. The results showed that the largest energy-saving capacity belongs to PCM5. The energy saving reaches 52.7% for PCM5 for a thickness of 0.1 m. The PCM1, PCM2, PCM3, PCM4 can provide energy saving rates of 23.5%, 34.3%, 44.7% and 50.5%, respectively. INS-PCM5 can provide about 1.74-, 1.5-, and 1.33 times larger cost savings than INS in 2nd, 3rd, and 4th regions for all fuels. The payback period varies between 0.37 and 5.81 years regarding the fuel and Region. Finally, the results indicate that the proposed composite provided a promising energy-saving potential in building applications by reducing.

5.
Environ Sci Pollut Res Int ; 29(59): 88710-88724, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35838937

ABSTRACT

Due to the increased population in the urbanized areas, considerable attention is being paid on the development of energy-efficient buildings. In construction, the use of insulating foams has grabbed considerable attention in recent decades due to their porous structure that can reduce thermo-acoustic conductivity leading to higher energy efficiency. Nonetheless, the production of certain foams (e.g., polymer foams) is based on harmful chemical substances, such as isocyanate, as well as having difficulty being recycled. In this regard, this study adopted the use of hydrodesulfurization (HDS) spent catalyst, which is a byproduct of petroleum industry and is known to be a hazardous solid waste material, to produce a more environmentally friendly composite foam with lower thermal conductivity. In this sense, a series of material property tests, as well as thermal conductivity test, have been conducted. In addition, to further confirm the impact of HDS inclusion in the produced foams, energy cost savings and CO2 emission reduction based on their actual application in four different environments and four different fuel types for heating have been evaluated. The results are found to be highly promising and point to the great potential of utilizing HDS spent catalyst as a hazardous waste to enhance the efficiency of foams leading to CO2 emission and energy use reduction by up to 68.79 kg/m2 and 8.6 kWh/m2, respectively. Finally, this would reduce the heating cost, up to 0.69 $/m2 in an idealized building. In the end, suggestions for future studies in this area are also provided.

7.
Environ Sci Pollut Res Int ; 29(47): 71936-71947, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35608771

ABSTRACT

Within the scope of the present study, the marble cutting waste, which is an industrial waste of different sizes (< 75 µm and < 150 µm), was incorporated into the clay structure at various rates and a total of 36 series bricks were produced. The brick mixtures were prepared by the semi-dry molding method and the brick specimens were sintered for three temperatures (850 °C, 950 °C, and 1050 °C). The fired bricks containing marble cutting waste with a lower particle size (75 µm) have higher compressive strength. However, all samples produced can meet the relevant standard requirements in terms of compressive strength. Thermal conductivity decreased from 1.008 to 0.775 W/mK with the incorporation of marble cutting waste, a decrease of approximately 23.11%. The effects of grain size, firing temperature, and marble cutting waste concentration on the quadratic model were statistically determined by variance analysis (ANOVA). According to statistical findings, the order of importance of design factors for brick properties (except for compressive strength) is marble cutting waste > firing temperature > particle size. For compressive strength, the most dominant factor is amount of marble cutting waste, followed by particle size and firing temperature, respectively. Consequently, the results suggest that marble cutting waste does not need to be reduced to smaller particle sizes to improve the fired clay brick properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...