Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(23): 4629-4651, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35477904

ABSTRACT

Stimulus-specific adaptation (SSA) is the reduction in responses to frequent stimuli (standards) that does not generalize to rare stimuli (deviants). We investigated the contribution of inhibition in auditory cortex to SSA using two-photon targeted cell-attached recordings and optogenetic manipulations in male mice. We characterized the responses of parvalbumin (PV)-, somatostatin (SST)-, and vasoactive intestinal polypeptide (VIP)-expressing interneurons of layer 2/3, and of serotonin receptor 5HT3a-expressing interneurons of layer 1. All populations showed early-onset SSA. Unexpectedly, the PV, SST, and VIP populations exhibited a substantial late component of evoked activity, often stronger for standard than for deviant stimuli. Optogenetic suppression of PV neurons facilitated pyramidal neuron responses substantially more (approximately ×10) for deviants than for standards. VIP suppression decreased responses of putative PV neurons, specifically for standard but not for deviant stimuli. Thus, the inhibitory network does not generate cortical SSA, but powerfully controls its expression by differentially affecting the responses to deviants and to standards.SIGNIFICANCE STATEMENT Stimulus-specific adaptation (SSA) reflects the growing complexity of auditory processing along the ascending auditory system. In the presence of SSA, neuronal responses depend not only on the stimulus itself but also on the history of stimulation. Strong SSA in the fast, ascending auditory pathway first occurs in cortex. Here we studied the role of the cortical inhibitory network in shaping SSA, showing that while cortical inhibition does not generate SSA, it powerfully controls its expression. We deduce that the cortical network contributes in crucial ways to the properties of SSA.


Subject(s)
Auditory Cortex , Animals , Auditory Cortex/physiology , Auditory Perception/physiology , Interneurons/physiology , Male , Mice , Parvalbumins/metabolism , Pyramidal Cells/physiology , Vasoactive Intestinal Peptide/metabolism
2.
PLoS Comput Biol ; 13(3): e1005437, 2017 03.
Article in English | MEDLINE | ID: mdl-28288158

ABSTRACT

Stimulus-specific adaptation (SSA) occurs when neurons decrease their responses to frequently-presented (standard) stimuli but not, or not as much, to other, rare (deviant) stimuli. SSA is present in all mammalian species in which it has been tested as well as in birds. SSA confers short-term memory to neuronal responses, and may lie upstream of the generation of mismatch negativity (MMN), an important human event-related potential. Previously published models of SSA mostly rely on synaptic depression of the feedforward, thalamocortical input. Here we study SSA in a recurrent neural network model of primary auditory cortex. When the recurrent, intracortical synapses display synaptic depression, the network generates population spikes (PSs). SSA occurs in this network when deviants elicit a PS but standards do not, and we demarcate the regions in parameter space that allow SSA. While SSA based on PSs does not require feedforward depression, we identify feedforward depression as a mechanism for expanding the range of parameters that support SSA. We provide predictions for experiments that could help differentiate between SSA due to synaptic depression of feedforward connections and SSA due to synaptic depression of recurrent connections. Similar to experimental data, the magnitude of SSA in the model depends on the frequency difference between deviant and standard, probability of the deviant, inter-stimulus interval and input amplitude. In contrast to models based on feedforward depression, our model shows true deviance sensitivity as found in experiments.


Subject(s)
Acoustic Stimulation/methods , Adaptation, Physiological/physiology , Auditory Cortex/physiology , Models, Neurological , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Animals , Computer Simulation , Feedback, Physiological/physiology , Humans , Nerve Net/physiology
3.
Nano Lett ; 10(12): 5043-8, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21050011

ABSTRACT

We study single wall carbon nanotubes (SWNTs) deposited on quartz. Their Raman spectrum depends on the tube-substrate morphology, and in some cases, it shows that the same SWNT-on-quartz system exhibits a mixture of semiconductor and metal behavior, depending on the orientation between the tube and the substrate. We also address the problem using electric force microscopy and ab initio calculations, both showing that the electronic properties along a single SWNT are being modulated via tube-substrate interaction.

4.
Nano Lett ; 10(11): 4742-9, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20957987

ABSTRACT

We present a new approach for the creation of nanowires with well-defined complex geometries by electrodeposition onto self-organized single-walled carbon nanotubes. The concept is demonstrated by generation of continuous Au nanowires with various geometries, including parallel arrays, serpentines, and coils. The generality of this approach is further illustrated by synthesizing Bi(2)Te(3) nanowires. Our concept of "drawing with nanotubes" offers to combine different material properties with complex geometries on the route to new functional nanosystems.


Subject(s)
Crystallization/methods , Electroplating/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...