Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24181-24202, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882113

ABSTRACT

Optical biosensors exhibit immense potential, offering extraordinary possibilities for biosensing due to their high sensitivity, reusability, and ultrafast sensing capabilities. This review provides a concise overview of optical biosensors, encompassing various platforms, operational mechanisms, and underlying physics, and it summarizes recent advancements in the field. Special attention is given to plasmonic biosensors and metasurface-based biosensors, emphasizing their significant performance in bioassays and, thus, their increasing attraction in biosensing research, positioning them as excellent candidates for lab-on-chip and point-of-care devices. For plasmonic biosensors, we emphasize surface plasmon resonance (SPR) and its subcategories, along with localized surface plasmon resonance (LSPR) devices and surface enhance Raman spectroscopy (SERS), highlighting their ability to perform diverse bioassays. Additionally, we discuss recently emerged metasurface-based biosensors. Toward the conclusion of this review, we address current challenges, opportunities, and prospects in optical biosensing. Considering the advancements and advantages presented by optical biosensors, it is foreseeable that they will become a robust and widespread platform for early disease diagnostics.

2.
Small ; 20(5): e2304848, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37732364

ABSTRACT

Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Magnetite Nanoparticles/therapeutic use , Magnetite Nanoparticles/chemistry , Drug Delivery Systems/methods , Magnetics/methods , Hyperthermia, Induced/methods , Magnetic Fields
4.
ACS Appl Bio Mater ; 6(10): 4042-4059, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37725557

ABSTRACT

Early-stage screening of cancer is critical in preventing its development and therefore can improve the prognosis of the disease. One accurate and effective method of cancer screening is using high sensitivity biosensors to detect optically, chemically, or magnetically labeled cancer biomarkers. Among a wide range of biosensors, giant magnetoresistance (GMR) based devices offer high sensitivity, low background noise, robustness, and low cost. With state-of-the-art micro- and nanofabrication techniques, tens to hundreds of independently working GMR biosensors can be integrated into fingernail-sized chips for the simultaneous detection of multiple cancer biomarkers (i.e., multiplexed assay). Meanwhile, the miniaturization of GMR chips makes them able to be integrated into point-of-care (POC) devices. In this review, we first introduce three types of GMR biosensors in terms of their structures and physics, followed by a discussion on fabrication techniques for those sensors. In order to achieve target cancer biomarker detection, the GMR biosensor surface needs to be subjected to biological decoration. Thus, commonly used methods for surface functionalization are also reviewed. The robustness of GMR-based biosensors in cancer detection has been demonstrated by multiple research groups worldwide and we review some representative examples. At the end of this review, the challenges and future development prospects of GMR biosensor platforms are commented on. With all their benefits and opportunities, it can be foreseen that GMR biosensor platforms will transition from a promising candidate to a robust product for cancer screening in the near future.

5.
Sensors (Basel) ; 23(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177614

ABSTRACT

Since its first report in 2006, magnetic particle spectroscopy (MPS)-based biosensors have flourished over the past decade. Currently, MPS are used for a wide range of applications, such as disease diagnosis, foodborne pathogen detection, etc. In this work, different MPS platforms, such as dual-frequency and mono-frequency driving field designs, were reviewed. MPS combined with multi-functional magnetic nanoparticles (MNPs) have been extensively reported as a versatile platform for the detection of a long list of biomarkers. The surface-functionalized MNPs serve as nanoprobes that specifically bind and label target analytes from liquid samples. Herein, an analysis of the theories and mechanisms that underlie different MPS platforms, which enable the implementation of bioassays based on either volume or surface, was carried out. Furthermore, this review draws attention to some significant MPS platform applications in the biomedical and biological fields. In recent years, different kinds of MPS point-of-care (POC) devices have been reported independently by several groups in the world. Due to the high detection sensitivity, simple assay procedures and low cost per run, the MPS POC devices are expected to become more widespread in the future. In addition, the growth of telemedicine and remote monitoring has created a greater demand for POC devices, as patients are able to receive health assessments and obtain results from the comfort of their own homes. At the end of this review, we comment on the opportunities and challenges for POC devices as well as MPS devices regarding the intensely growing demand for rapid, affordable, high-sensitivity and user-friendly devices.


Subject(s)
Biosensing Techniques , Point-of-Care Systems , Humans , Biosensing Techniques/methods , Magnetics , Spectrum Analysis , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...