Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(2): 1094-1105, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174287

ABSTRACT

In this research, a new urea-rich porous organic polymer (urea-rich POP) as a hydrogen bond catalyst was synthesized via a solvothermal method. The physiochemical properties of the synthesized urea-rich POP were investigated by using different analyses like Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), energy-dispersive X-ray spectroscopy (EDS), elemental mapping analysis, X-ray diffraction analysis (XRD) and Brunauer-Emmett-Teller (BET) techniques. The preparation of urea-rich POP provides an efficacious platform for designing unique hydrogen bond catalytic systems. Accordingly, urea-rich POP, due to the existence of several urea moieties as hydrogen bond sites, has excellent performance as a catalyst for the Knoevenagel condensation reaction and multi-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones.

2.
Sci Rep ; 13(1): 9486, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301889

ABSTRACT

Herein, a new heterogeneous catalytic system through modification of urea functionalized magnetic nanoparticles with choline chloride [Fe3O4@SiO2@urea-riched ligand/Ch-Cl] was designed and synthesized. Then, the synthesized Fe3O4@SiO2@urea-riched ligand/Ch-Cl was characterized by using FT-IR spectroscopy, FESEM, TEM, EDS-Mapping, TGA/DTG and VSM techniques. After that, the catalytic usage of Fe3O4@SiO2@urea-riched ligand/Ch-Cl was investigated for the synthesis of hybrid pyridines with sulfonate and/or indole moieties. Delightfully, the outcome was satisfactory and the applied strategy represents several advantages such as short reaction times, convenience of operation and relatively good yields of obtained products. Moreover, the catalytic behavior of several formal homogeneous DESs was investigated for the synthesis of target product. In addition, a cooperative vinylogous anomeric-based oxidation pathway was suggested as rational mechanism for the synthesis of new hybrid pyridines.


Subject(s)
Magnetics , Silicon Dioxide , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Ligands , Catalysis
3.
RSC Adv ; 12(53): 34730-34739, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36540275

ABSTRACT

In this study, an acidic phosphonium-based ionic liquid, namely tributyl(3-sulfopropyl)phosphonium trifluoroacetate, was designed and synthesized via a facile and green route. From an accurate perspective, the structure of the prepared ionic liquid was investigated using FT-IR, 1H NMR and 13C NMR spectroscopies, and EDX, elemental mapping and TGA/DTG analysis. In this intensive research, catalytic application of tributyl(3-sulfopropyl)phosphonium trifluoroacetate was explored for the preparation of diverse pyridine systems such as triaryl pyridines, 2-amino-3-cyanopyridines and indolyl pyridines via a cooperative vinylogous anomeric-based oxidation (CVABO). The observed results proved that prepared acidic phosphonium-based ionic liquid is a effective catalyst for the multicomponent synthesis of pyridines.

4.
RSC Adv ; 12(43): 28020, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36321860

ABSTRACT

[This retracts the article DOI: 10.1039/C5RA23670C.].

6.
RSC Adv ; 12(26): 16342-16353, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35747527

ABSTRACT

In this work, we reported the synthesis and application of a new urea-benzoic acid containing ligand [(OEt)3Si(CH2)3-urea-benzoic acid] for the functionalization of silica coated magnetic nanoparticles. The resulting structure, namely Fe3O4@SiO2@(CH2)3-urea-benzoic acid, was characterized through different techniques including FT-IR, SEM, EDX-Mapping, VSM and TGA/DTG analysis. Then, Fe3O4@SiO2@(CH2)3-urea-benzoic acid was applied as a heterogeneous dual acidic and hydrogen bonding catalyst for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines under mild and green reaction conditions. More importantly, all of the desired products were obtained with relatively good yields. Also, the catalyst was recovered and reused for four successive runs without significant reduction in yield of the model reaction.

7.
RSC Adv ; 12(14): 8804-8814, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424833

ABSTRACT

Herein, the synthesis and characterization of a triazine-based magnetic ionic porous organic polymer are reported. The structure, morphology, and components of the prepared structure have been investigated with several spectroscopic and microscopic techniques such as FT-IR, EDX, elemental mapping, TGA/DTA, SEM, TEM, VSM, and BET analysis. Also, catalytic application of the prepared triazine-based magnetic ionic porous organic polymer was investigated for the synthesis of hybrid pyridine derivatives bearing indole, triazole and sulfonamide groups. Furthermore, the prepared hybrid pyridine systems were characterized by FT-IR, 1H NMR, 13C NMR and mass analysis. A cooperative vinylogous anomeric-based oxidation pathway was suggested for the synthesis of target molecules.

8.
Chem Soc Rev ; 50(18): 10700-10702, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34542124

ABSTRACT

Correction for 'Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone' by Igor V. Alabugin et al., Chem. Soc. Rev., 2021, DOI: 10.1039/d1cs00386k.

9.
Sci Rep ; 11(1): 16846, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413326

ABSTRACT

Herein, novel magnetic nanoparticles with pyridinium bridges namely Fe3O4@SiO2@PCLH-TFA through a multi-step pathway were designed and synthesized. The desired catalyst and its corresponding precursors were characterized with different techniques such as Fourier transform infrared (FT-IR) spectroscopy, 1H NMR, 13C NMR, Mass spectroscopy, energy dispersive X-ray (EDX) analysis, thermogravimetric/derivative thermogravimetry (TG/DTG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). In addition, the catalytic application of the prepared catalyst in the synthesis of new series of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation was highlighted. The current trend revealed that the mentioned catalyst shows high recoverability in the reported synthesis.

10.
Chem Soc Rev ; 50(18): 10253-10345, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34263287

ABSTRACT

Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.

11.
RSC Adv ; 11(5): 3143-3152, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424257

ABSTRACT

In the present study, we reported the synthesis of a novel quinoline-based dendrimer-like ionic liquid. After characterization of the mentioned ionic liquid with suitable techniques such as Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), elemental mapping, thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG), its catalytic performance was investigated in the synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism under mild reaction conditions. All target molecules were achieved in short reaction times and high yields.

12.
ACS Omega ; 5(7): 3207-3217, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32118136

ABSTRACT

In this exploration, we reported the design and synthesis of a novel ionically tagged magnetic nanoparticles bearing urea linkers, namely, Fe3O4@SiO2@(CH2)3-urea-thiazole sulfonic acid chloride. The structure of the mentioned compound was fully characterized by using several techniques including Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, elemental mapping analysis, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. In the presence of the novel reusable catalyst, applied starting materials including aryl aldehydes, pyruvic acid, and 1-naphthylamine condensed to afford the desired 2-aryl-quinoline-4-carboxylic acid derivatives via an anomeric-based oxidation pathway under solvent-free conditions.

13.
RSC Adv ; 10(73): 44946-44957, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-35516278

ABSTRACT

Protection techniques of functional groups within the structure of organic compounds are important synthetic methods against unwanted attacks from various reagents during synthetic sequences. Acetal and thioacetal groups are well known as protective functional groups in organic reactions. In this study, acetalization of carbonyl compounds with diols and dithiols and methoxymethylation of alcohols with formaldehyde dimethyl acetal (FDMA) have been carried out using sulfamic acid-functionalized magnetic Fe3O4 nanoparticles (SA-MNPs) as a heterogeneous solid acid catalyst. Products were characterized by FT-IR and NMR spectroscopies. The structural and electronic properties of some products were computed by quantum mechanical (QM) methods. Depending on the stereochemistry and electronic properties that were obtained by computational results, we have suggested that hyperconjugation plays a key role in the structural properties of 2-phenyl-1,3-dioxolane derivatives, and also the electron transfer between π-electrons of the aromatic ring with the 3d orbital of S-atoms influences the 2-phenyl-1,3-dithiane derivatives' structure.

14.
RSC Adv ; 10(46): 27824-27834, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35516925

ABSTRACT

Cobalt tetra-2,3-pyridiniumporphyrazinato with sulfonic acid tag [Co(TPPASO3H)]Cl was produced and catalyzed the synthesis of ortho-aminocarbonitriles, cyclohexa-1,3-dienamines and 2-amino-3-cyanopyridines. The synthesis of 2-amino-3-cyanopyridines by using [Co(TPPASO3H)]Cl proceeded via a cooperative vinylogous anomeric based oxidation mechanism. [Co(TPPASO3H)]Cl can be recycled and reused six times with a marginal decreasing of its catalytic activity.

15.
RSC Adv ; 10(43): 25828-25835, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-35518593

ABSTRACT

The presented study is the first report of the synthesis of terpyridines in the presence of a nanomagnetic catalyst instead of harmful reagents. Herein, Fe3O4@O2PO2(CH2)2NH3 +CF3CO2 - as a retrievable nanocatalyst with magnetic properties was applied for the multi-component reaction between acetylpyridine derivatives (2 or 3 or 4-isomer), aryl aldehydes and ammonium acetate under conventional heating conditions in the absence of any solvent. The derived terpyridines were obtained with acceptable yields and brief reaction times via a cooperative vinylogous anomeric based oxidation route. Fe3O4@O2PO2(CH2)2NH3 +CF3CO2 - showed a high capability for recovery and reuse in the mentioned reaction.

16.
R Soc Open Sci ; 7(11): 200803, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33391788

ABSTRACT

Removal of sulfur compounds from liquid fuel is one of the important issues in the field of energy and environment. Among the available methods, extractive desulfurization (EDS) is of great interest due to its convenient operating conditions. In this study, EDS performance of 4,7,10-trioxatridecane-1,13-diamine (TTD), a very low vapour pressure diamine-terminated oligomeric polyethylene glycol (PEG), was studied. Effect of the influencing factors, as well as multiple extraction, mutual solubility, reusability and regeneration of TTD were investigated. Results showed that the TTD/fuel volume ratio of 0.5 could extract benzothiophene, dibenzothiophene and dimethyl dibenzothiophene with the efficiencies 67%, 74% and 53%, respectively, in less than 1 min at ambient temperature. The distribution coefficient (KN ) value for removal of dibenzothiophene by TTD was 3.66 higher than that of PEG, and it is similar to KN values (approx. 4) for polyethylene glycol dimethyl ether (as a modified PEG) and Lewis acid-containing ionic liquids. It was observed that spent TTD after five cycles could be regenerated using the back-extraction method. Also, deep EDS was achievable after three times extraction using fresh TTD. Finally, the extraction mechanism was studied using 1H-NMR. These observations, as well as very low vapour pressure and insignificant dependency of TTD on the initial S-concentration of fuel and temperature, make this extractant to be introduced as a valuable option for green and effective EDS.

SELECTION OF CITATIONS
SEARCH DETAIL
...