Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(24): 6041-6047, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29189012

ABSTRACT

We study the origin of photoluminescence (PL) intermittency in formamidinium lead bromide (FAPbBr3, FA = HC(NH2)2) nanocrystals and the impact of postsynthetic surface treatments on the PL intermittency. Single-dot spectroscopy revealed the existence of different individual nanocrystals exhibiting either a blinking (binary on-off switching) or flickering (gradual undulation) behavior of the PL intermittency. Although the PL lifetimes of blinking nanocrystals clearly correlate with the individual absorption cross sections, those of flickering nanocrystals show no correlation with the absorption cross sections. This indicates that flickering has an extrinsic origin, which is in contrast to blinking. We demonstrate that the postsynthetic surface treatment with sodium thiocyanate improves the PL quantum yields and completely suppresses the flickering, while it has no significant effect on the blinking behavior. We conclude that the blinking is caused by Auger recombination of charged excitons, and the flickering is due to a temporal drift of the exciton recombination rate induced by surface-trapped electrons.

2.
Angew Chem Int Ed Engl ; 56(44): 13650-13654, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28865137

ABSTRACT

All inorganic CsPbBr3 perovskite quantum dots (QDs) are potential emitters for electroluminescent displays. We have developed a facile hot-injection method to partially replace the toxic Pb2+ with highly stable Sn4+ . Meanwhile, the absolute photoluminescence quantum yield of CsPb1-x Snx Br3 increased from 45 % to 83 % with SnIV substitution. The transient absorption (TA) exciton dynamics in undoped CsPbBr3 and CsPb0.67 Sn0.33 Br3 QDs at various excitation fluences were determined by femtosecond transient absorption, time-resolved photoluminescence, and single-dot spectroscopy, providing clear evidence for the suppression of trion generation by Sn doping. These highly luminescent CsPb0.67 Sn0.33 Br3 QDs emit at 517 nm. A device based on these QDs exhibited a luminance of 12 500 cd m-2 , a current efficiency of 11.63 cd A-1 , an external quantum efficiency of 4.13 %, a power efficiency of 6.76 lm w-1 , and a low turn-on voltage of 3.6 V, which are the best values among reported tin-based perovskite quantum-dot LEDs.

3.
J Phys Chem Lett ; 8(7): 1413-1418, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28286951

ABSTRACT

Metal-halide perovskite nanocrystals (NCs) are promising photonic materials for use in solar cells, light-emitting diodes, and lasers. The optoelectronic properties of these devices are determined by the excitons and exciton complexes confined in their NCs. In this study, we determined the relaxation dynamics of charged excitons and biexcitons in CsPbBr3 NCs using femtosecond transient-absorption (TA), time-resolved photoluminescence (PL), and single-dot second-order photon correlation spectroscopy. Decay times of ∼40 and ∼200 ps were obtained from the TA and PL decay curves for biexcitons and charged excitons, respectively, in NCs with an average edge length of 7.7 nm. The existence of charged excitons even under weak photoexcitation was confirmed by the second-order photon correlation measurements. We found that charged excitons play a dominant role in luminescence processes of CsPbBr3 NCs. Combining different spectroscopic techniques enabled us to clarify the dynamical behaviors of excitons, charged excitons, and biexcitons.

SELECTION OF CITATIONS
SEARCH DETAIL
...