Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(48): 55669-55678, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983595

ABSTRACT

A novel Monarch carbon material with proton conduction capability due to the presence of sulfone/sulfoxide/sulfonic groups on the surface was evaluated as a potential cathode catalyst support to enable an electrode design with low ionomer content in proton exchange membrane (PEM) fuel cells. X-ray photoelectron spectroscopy of the carbon support confirmed the sulfonic acid functionality, while dynamic vapor sorption measurements proved higher water uptake. Electrochemical impedance spectroscopy of the PtCo/Monarch electrodes showed higher proton conductivity than state-of-the-art PtCo/C with decreasing ionomer to carbon (I/C) content due to the presence of sulfonic acid functional groups on the carbon support surface. Fuel cell performance and durability measurements showed better high-current density performance for PtCo/Monarch with a 75% lower ionomer content in the electrode compared to that of PtCo/C. Our studies indicate that Monarch carbon could be a viable alternative support for PEM fuel cell catalyst applications.

2.
Water Environ Res ; 95(1): e10831, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36617440

ABSTRACT

Algal-bacterial granules or phototrophic granules (PGs) comprising phototrophic microorganisms and bacteria are explored in wastewater treatment for achieving both environmental and economic sustainability. This study describes development of PGs and their use in biological treatment of synthetic and real domestic wastewater (sewage) under natural daylight conditions and low organic loading rate (OLR). Development of PGs was sequentially recorded in a photobioreactor operated in photo-sequencing batch reactor (photo-SBR) mode at a low OLR of 1 kgCOD.m-3 .day-1 and the developed PGs was evaluated for treating synthetic wastewater and real municipal wastewater with 0.14 kg COD m-3 .day-1 . PGs formed in the photo-sequential batch reactor (SBR) were compact and dense and exhibited excellent settling properties. The removal efficiencies were determined to be up to 95%, 93%, 97%, 72%, and 88% for turbidity, COD, TOC, NH4 + -N, and NO2 - -N/NO3 - -N, respectively. Additionally, a reduction in total viable bacterial counts and fecal coliform bacteria up to 1.7 × 103 and 7.8 × 102 cfu.mL-1 , respectively, during treatment of real municipal wastewater was achieved. This study demonstrated cultivation of algal-bacterial granules or PGs and their application for treating real municipal wastewater under natural daylight and tropical climate conditions. Further studies are needed on understanding interactions among phototrophic, autotrophic, and heterotrophic microorganisms of complex algal-bacterial consortium for emerging applications in bioremediation and wastewater treatment. PRACTITIONER POINTS: Phototrophic granules (PGs) were cultivated from algal consortium and activated sludge inoculum in photo sequencing batch reactors. Granular photobioreactor was operated at low OLR of 1 kgCOD.m3 .day-1 for developing well-settling algal-bacterial granules. PGs were stable and showed efficient biological treatment of synthetic wastewater and real sewage. Removals for turbidity, pathogens, and ammonium were at 95%, 3-log, and 72%, respectively, from real sewage.


Subject(s)
Wastewater , Water Purification , Sewage/microbiology , Waste Disposal, Fluid , Bioreactors/microbiology , Bacteria , Photobioreactors
3.
Proc Natl Acad Sci U S A ; 116(6): 1974-1983, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30670659

ABSTRACT

Ordered intermetallic nanoparticles are promising electrocatalysts with enhanced activity and durability for the oxygen-reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). The ordered phase is generally identified based on the existence of superlattice ordering peaks in powder X-ray diffraction (PXRD). However, after employing a widely used postsynthesis annealing treatment, we have found that claims of "ordered" catalysts were possibly/likely mixed phases of ordered intermetallics and disordered solid solutions. Here, we employed in situ heating, synchrotron-based, X-ray diffraction to quantitatively investigate the impact of a variety of annealing conditions on the degree of ordering of large ensembles of Pt3Co nanoparticles. Monte Carlo simulations suggest that Pt3Co nanoparticles have a lower order-disorder phase transition (ODPT) temperature relative to the bulk counterpart. Furthermore, we employed microscopic-level in situ heating electron microscopy to directly visualize the morphological changes and the formation of both fully and partially ordered nanoparticles at the atomic scale. In general, a higher degree of ordering leads to more active and durable electrocatalysts. The annealed Pt3Co/C with an optimal degree of ordering exhibited significantly enhanced durability, relative to the disordered counterpart, in practical membrane electrode assembly (MEA) measurements. The results highlight the importance of understanding the annealing process to maximize the degree of ordering in intermetallics to optimize electrocatalytic activity.

4.
J Biosci Bioeng ; 121(2): 191-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26134447

ABSTRACT

A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy.


Subject(s)
Bioreactors , Nitrates/isolation & purification , Sewage/chemistry , Carbon/metabolism , Denitrification , Nitrates/metabolism , Nitrites/metabolism , Nitrogen/metabolism
5.
Materials (Basel) ; 9(3)2016 Feb 29.
Article in English | MEDLINE | ID: mdl-28773268

ABSTRACT

The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 µm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 µm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.

6.
FEMS Microbiol Lett ; 359(1): 110-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25135363

ABSTRACT

Dibutyl phosphite, an organophosphorous compound, finds applications in different chemical industries and processes. Here, we report an efficient approach of biodegradation to be eventually used in bioremediation of dibutyl phosphite. Aerobic granules capable of dibutyl phosphite biodegradation were cultivated in a sequencing batch reactor (SBR). The SBR was operated with a 24-h cycle by feeding with dibutyl phosphite as a cosubstrate along with acetate. During the course of the SBR operation, aerobic granules of 0.9 ± 0.3 mm size were developed. Complete biodegradation of 1.4, 2 and 3 mM of dibutyl phosphite was achieved in 4, 5 and 8 h, respectively, accompanied by stoichiometric release of phosphite (H3 PO3). Phosphatase activity in the dibutyl phosphite-degrading granular biomass was 3- and 1.5-fold higher as compared to the activated sludge (seed biomass) and acetate-fed aerobic granules, respectively, indicating involvement in the hydrolysis of dibutyl phosphite. Microbial community analysis by t-RFLP showed the presence of 12 different bacterial types. Two bacterial strains capable of growth on dibutyl phosphite as sole carbon source were isolated and characterized as Acidovorax sp. and Sphingobium sp. The results show that aerobic microbial granules based process is suitable for the treatment of dibutyl phosphite contaminated water.


Subject(s)
Esters/metabolism , Organophosphates/metabolism , Phosphites/metabolism , Sewage/microbiology , Acetates/metabolism , Aerobiosis , Bacteria/classification , Bacteria/genetics , Bioreactors/microbiology , Biota , Biotransformation , Metagenomics , Polymorphism, Restriction Fragment Length
7.
Bioresour Technol ; 108: 295-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22273516

ABSTRACT

In this study, the influence exogenous electron shuttles on the growth and glucose fermentative metabolism of Clostridium sp. BC1 was investigated. Bicarbonate addition to mineral salts (MS) medium accelerated growth and glucose fermentation which shifted acidogenesis (acetic- and butyric-acids) towards solventogenesis (ethanol and butanol). Addition of ferrihydrite, anthraquinone disulfonate, and nicotinamide adenine dinucleotide in bicarbonate to growing culture showed no significant influence on fermentative metabolism. In contrast, methyl viologen (MV) enhanced ethanol- and butanol-production by 28- and 12-fold, respectively with concomitant decrease in hydrogen, acetic- and butyric-acids compared to MS medium. The results show that MV addition affects hydrogenase activity with a significant reduction in hydrogen production and a shift in the direction of electron flow towards enhanced production of ethanol and butanol.


Subject(s)
Butanols/metabolism , Clostridium/metabolism , Ethanol/metabolism , Fermentation/physiology , Glucose/metabolism , Anaerobiosis , Clostridium/growth & development , Electron Transport/physiology , Fermentation/drug effects , Hydrogenase/metabolism , Paraquat/pharmacology , Sodium Bicarbonate/pharmacology
8.
Appl Biochem Biotechnol ; 166(5): 1225-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22205323

ABSTRACT

The aim of the study was to investigate the acclimation of precultivated acetate-fed aerobic granular sludge to a toxic xenobiotic biodegradation. Establishment of p-nitrophenol (PNP) biodegradation in acetate-fed aerobic granular sludge and concomitant changes in the microstructure and bacterial community were determined. Rapid establishment of PNP utilization was observed in the granular sludge when fed with PNP as the sole carbon source. The specific PNP removal was 36-mg h(-1) g(-1) granular biomass at an initial PNP concentration of 50 mg L(-1). The presence of PNP resulted in significant membrane damage in a subpopulation of the bacterial consortium, as shown by BacLight viability staining. This was coincided with a significant decrease in the culturable bacterial diversity of the granular biomass. PCR-DGGE analysis revealed a shift and decrease in number of bands during the establishment of PNP biodegradation. Scanning electron microscopy showed the dominance of rod-shaped bacteria in the PNP-utilizing microbial granules. Our results suggest that acetate-fed granular sludge could be quickly adapted for PNP biodegradation.


Subject(s)
Acetates/metabolism , Environmental Pollutants/metabolism , Nitrophenols/metabolism , Sewage/microbiology , Aerobiosis , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/ultrastructure , Biodegradation, Environmental , Environmental Pollutants/isolation & purification , Kinetics , Nitrophenols/isolation & purification , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...