Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Technology (Singap World Sci) ; 6(1): 1-23, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29682599

ABSTRACT

Flow cytometry is an invaluable tool utilized in modern biomedical research and clinical applications requiring high throughput, high resolution particle analysis for cytometric characterization and/or sorting of cells and particles as well as for analyzing results from immunocytometric assays. In recent years, research has focused on developing microfluidic flow cytometers with the motivation of creating smaller, less expensive, simpler, and more autonomous alternatives to conventional flow cytometers. These devices could ideally be highly portable, easy to operate without extensive user training, and utilized for research purposes and/or point-of-care diagnostics especially in limited resource facilities or locations requiring on-site analyses. However, designing a device that fulfills the criteria of high throughput analysis, automation and portability, while not sacrificing performance is not a trivial matter. This review intends to present the current state of the field and provide considerations for further improvement by focusing on the key design components of microfluidic flow cytometers. The recent innovations in particle focusing and detection strategies are detailed and compared. This review outlines performance matrix parameters of flow cytometers that are interdependent with each other, suggesting trade offs in selection based on the requirements of the applications. The ongoing contribution of microfluidics demonstrates that it is a viable technology to advance the current state of flow cytometry and develop automated, easy to operate and cost-effective flow cytometers.

2.
Biomech Model Mechanobiol ; 16(4): 1095-1102, 2017 08.
Article in English | MEDLINE | ID: mdl-28220319

ABSTRACT

Donor livers available to transplant for patients with end-stage liver disease are in severe shortage. One possible avenue to expand the donor pool is to recondition livers that would be otherwise discarded due to excessive fat content. Severely steatotic livers (also known as fatty livers) are highly susceptible to ischemia-reperfusion injury and as a result, primary liver non-function post-transplantation. Prior studies in isolated perfused rat livers suggest that "defatting" may be possible in a timeframe of a few hours; thus, it is conceivable that fatty liver grafts could be recovered by machine perfusion to clear stored fat from the organ prior to transplantation. However, studies using hepatoma cells and adult hepatocytes made fatty in culture report that defatting may take several days. Because cell culture studies were done in static conditions, we hypothesized that the defatting kinetics are highly sensitive to flow-mediated transport of metabolites. To investigate this question, we experimentally evaluated the effect of increasing flow rate on the defatting kinetics of cultured HepG2 cells and developed an in silico combined reaction-transport model to identify possible rate-limiting steps in the defatting process. We found that in cultured fatty HepG2 cells, the time required to clear stored fat down to lean control cells can be reduced from 48 to 4-6 h by switching from static to flow conditions. The flow required resulted in a fluid shear of .008 Pa, which did not adversely affect hepatic function. The reaction-transport model suggests that the transport of L-carnitine, which is the carrier responsible for taking free fatty acids into the mitochondria, is the key rate-limiting process in defatting that was modulated by flow. Therefore, we can ensure higher levels of L-carnitine uptake by the cells by choosing flow rates that minimize the limiting mass transport while minimizing shear stress.


Subject(s)
Fatty Liver/metabolism , Hepatocytes/metabolism , Liver Transplantation/methods , Liver/metabolism , Triglycerides/metabolism , Animals , Hep G2 Cells , Humans , Liver/physiopathology , Rats , Time Factors
3.
Xenobiotica ; 47(11): 989-997, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28043194

ABSTRACT

1. In the intestines, the nuclear receptors farnesoid X receptor (Fxr) and pregnane X receptor (Pxr) regulate the transcription of metabolizing enzymes and transporters that dictate the absorption of nutrients and xenobiotics. 2. Here, we sought to determine whether Fxr and Pxr signaling pathways are disrupted in response to high-circulating concentrations of steroid hormones late in pregnancy leading to altered transporter expression. To test this, ileum were collected from virgin and pregnant C57BL/6 mice on gestation days 14, 17 and 19. 3. Ileum from pregnant mice exhibited suppression of Fgf15 and Cyp3a11 mRNAs, which are the prototypical target genes for Fxr and Pxr, respectively. An overall reduction in the expression of apical efflux transporters, including Mdr1, Mrp2 and Bcrp, was observed in pregnant mice. To assess the ability of steroid hormones to alter intestinal nuclear receptor signaling, transporter mRNA expression was quantified in human intestinal LS174T adenocarcinoma cells. In vitro data demonstrated that progestins reduced CYP3A4, MDR1 and MRP2 mRNA expression by 30-40%. 4. These data suggest that progesterone may act as a mediator to negatively regulate efflux transporter expression in the mouse ileum during pregnancy possibly by reducing PXR/Pxr signaling. This may affect drug absorption and disposition during pregnancy.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/metabolism , Animals , Female , Intestinal Mucosa/metabolism , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Pregnancy , Pregnane X Receptor , Xenobiotics/metabolism
4.
Metabolites ; 6(1)2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26742084

ABSTRACT

Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2) by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.

5.
Liver Transpl ; 20(8): 1000-11, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24802973

ABSTRACT

Macrosteatotic livers exhibit elevated intrahepatic triglyceride (TG) levels in the form of large lipid droplets (LDs), reduced adenosine triphosphate (ATP) levels, and elevated reactive oxygen species (ROS) levels, and this contributes to their elevated sensitivity to ischemia/reperfusion injury during transplantation. Reducing macrosteatosis in living donors through dieting has been shown to improve transplant outcomes. Accomplishing the same feat for deceased donor grafts would require ex vivo exposure to potent defatting agents. Here we used a rat hepatocyte culture system exhibiting a macrosteatotic LD morphology, elevated TG levels, and an elevated sensitivity to hypoxia/reoxygenation (H/R) to test for such agents and ameliorate H/R sensitivity. Macrosteatotic hepatocyte preconditioning for 48 hours with a defatting cocktail that was previously developed to promote TG catabolism reduced the number of macrosteatotic LDs and intracellular TG levels by 82% and 27%, respectively, but it did not ameliorate sensitivity to H/R. Supplementation of this cocktail with l-carnitine, together with hyperoxic exposure, yielded a similar reduction in the number of macrosteatotic LDs and a 57% reduction in intrahepatic TG storage, likely by increasing the supply of acetyl coenzyme A to mitochondria, as indicated by a 70% increase in ketone body secretion. Furthermore, this treatment reduced ROS levels by 32%, increased ATP levels by 27% (to levels near those of lean controls), and completely abolished H/R sensitivity as indicated by approximately 85% viability after H/R and the reduction of cytosolic lactate dehydrogenase release to levels seen in lean controls. Cultures maintained for 48 hours after H/R were approximately 83% viable and exhibited superior urea secretion and bile canalicular transport in comparison with untreated macrosteatotic cultures. In conclusion, these findings show that the elevated sensitivity of macrosteatotic hepatocytes to H/R can be overcome by defatting agents, and they suggest a possible route for the recovery of discarded macrosteatotic grafts.


Subject(s)
Fatty Liver/pathology , Hepatocytes/cytology , Liver Transplantation/methods , Oxygen/metabolism , Reperfusion Injury/metabolism , Acetyl Coenzyme A/metabolism , Adenosine Triphosphate/metabolism , Animals , Carnitine/blood , Cytosol/enzymology , Fatty Liver/therapy , Hepatocytes/drug effects , Hypoxia , Ketone Bodies/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Mitochondria/metabolism , Perfusion , Rats , Rats, Zucker , Reactive Oxygen Species , Transplantation Conditioning , Triglycerides/metabolism
6.
Liver Transpl ; 20(2): 228-36, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24339411

ABSTRACT

Large-droplet macrovesicular steatosis (ld-MaS) in more than 30% of liver graft hepatocytes is a major risk factor for liver transplantation. An accurate assessment of the ld-MaS percentage is crucial for determining liver graft transplantability, which is currently based on pathologists' evaluations of hematoxylin and eosin (H&E)-stained liver histology specimens, with the predominant criteria being the relative size of the lipid droplets (LDs) and their propensity to displace a hepatocyte's nucleus to the cell periphery. Automated image analysis systems aimed at objectively and reproducibly quantifying ld-MaS do not accurately differentiate large LDs from small-droplet macrovesicular steatosis and do not take into account LD-mediated nuclear displacement; this leads to a poor correlation with pathologists' assessments. Here we present an improved image analysis method that incorporates nuclear displacement as a key image feature for segmenting and classifying ld-MaS from H&E-stained liver histology slides. 52,000 LDs in 54 digital images from 9 patients were analyzed, and the performance of the proposed method was compared against the performance of current image analysis methods and the ld-MaS percentage evaluations of 2 trained pathologists from different centers. We show that combining nuclear displacement and LD size information significantly improves the separation between large and small macrovesicular LDs (specificity = 93.7%, sensitivity = 99.3%) and the correlation with pathologists' ld-MaS percentage assessments (linear regression coefficient of determination = 0.97). This performance vastly exceeds that of other automated image analyzers, which typically underestimate or overestimate pathologists' ld-MaS scores. This work demonstrates the potential of automated ld-MaS analysis in monitoring the steatotic state of livers. The image analysis principles demonstrated here may help to standardize ld-MaS scores among centers and ultimately help in the process of determining liver graft transplantability.


Subject(s)
Eosine Yellowish-(YS)/chemistry , Fatty Liver/pathology , Hematoxylin/chemistry , Image Processing, Computer-Assisted/methods , Algorithms , Cell Nucleus/metabolism , Cluster Analysis , Decision Trees , Graft Survival , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Linear Models , Liver/pathology , Liver Transplantation , Pattern Recognition, Automated , Risk Factors , Sensitivity and Specificity
7.
J Hepatol ; 59(6): 1307-14, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23872604

ABSTRACT

BACKGROUND & AIMS: A common cause of liver donor ineligibility is macrosteatosis. Recovery of such livers could enhance donor availability. Living donor studies have shown diet-induced reduction of macrosteatosis enables transplantation. However, cadaveric liver macrosteatotic reduction must be performed ex vivo within hours. Towards this goal, we investigated the effect of accelerated macrosteatosis reduction on hepatocyte viability and function using a novel system of macrosteatotic hepatocytes. METHODS: Hepatocytes isolated from lean Zucker rats were cultured in a collagen sandwich, incubated for 6 days in fatty acid-supplemented medium to induce steatosis, and then switched for 2 days to medium supplemented with lipid metabolism promoting agents. Intracellular lipid droplet size distribution and triglyceride, viability, albumin and urea secretion, and bile canalicular function were measured. RESULTS: Fatty acid-supplemented medium induced microsteatosis in 3 days and macrosteatosis in 6 days, the latter evidenced by large lipid droplets dislocating the nucleus to the cell periphery. Macrosteatosis significantly impaired all functions tested. Macrosteatosis decreased upon returning hepatocytes to standard medium, and the rate of decrease was 4-fold faster with supplemented agents, yielding 80% reduction in 2 days. Viability of macrosteatosis reduced hepatocytes was similar to control lean cells. Accelerated macrosteatotic reduction led to faster recovery of urea secretion and bile canalicular function, but not of albumin secretion. CONCLUSIONS: Macrosteatosis reversibly decreases hepatocyte function and supplementary agents accelerate macrosteatosis reduction and some functional restoration with no effect on viability. This in vitro model may be useful to screen agents for macrosteatotic reduction in livers before transplantation.


Subject(s)
Fatty Liver/etiology , Hepatocytes/physiology , Animals , Cell Survival , Cells, Cultured , Humans , Male , Rats , Rats, Zucker
8.
Neurosci Lett ; 438(2): 190-5, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18467031

ABSTRACT

The controlled differentiation of embryonic stem (ES) cells is of utmost interest to their clinical, biotechnological, and basic science use. Many investigators have combinatorially assessed the role of specific soluble factors and extracellular matrices in guiding ES cell fate, yet the interaction between neighboring cells in these heterogeneous cultures has been poorly defined due to a lack of conventional tools to specifically uncouple these variables. Herein, we explored the role of cell-cell interactions during neuroectodermal specification of ES cells using a microfabricated cell pair array. We tracked differentiation events in situ, using an ES cell line expressing green fluorescent protein (GFP) under the regulation of the Sox1 gene promoter, an early marker of neuroectodermal germ cell commitment in the adult forebrain. We observed that a previously specified Sox1-GFP+ cell could induce the specification of an undifferentiated ES cell. This induction was modulated by the two cells being in contact and was dependent on the age of previously specified cell prior to coculture. A screen of candidate cell adhesion molecules revealed that the expression of connexin (Cx)-43 correlated with the age-dependent effect of cell contact in cell pair experiments. ES cells deficient in Cx-43 showed aberrant neuroectodermal specification and lineage commitment, highlighting the importance of gap junctional signaling in the development of this germ layer. Moreover, this study demonstrates the integration of microscale culture techniques to explore the biology of ES cells and gain insight into relevant developmental processes otherwise undefined due to bulk culture methods.


Subject(s)
Cell Communication/physiology , Central Nervous System/embryology , Connexin 43/metabolism , Ectoderm/embryology , Embryonic Stem Cells/metabolism , Gap Junctions/metabolism , Animals , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Line , Cell Lineage/genetics , Cell Lineage/physiology , Central Nervous System/cytology , Central Nervous System/metabolism , Coculture Techniques , Connexin 43/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Embryonic Development/physiology , Embryonic Stem Cells/cytology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , High Mobility Group Proteins/genetics , High Mobility Group Proteins/metabolism , Mice , Neural Cell Adhesion Molecules/metabolism , SOXB1 Transcription Factors , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...