Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4444, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789421

ABSTRACT

Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy, Adoptive , Mitochondria , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mitochondria/metabolism , Humans , Immunotherapy, Adoptive/methods , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Cell Respiration , Cell Line, Tumor , Female , Ovalbumin/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy
2.
Proc Biol Sci ; 290(1992): 20222083, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36722087

ABSTRACT

Sexual dimorphism is common in animals. The most complete model of sex determination comes from Drosophila melanogaster, where the relative dosage of autosomes and X chromosomes leads indirectly to sex-specific transcripts of doublesex (dsx). Female Dsx interacts with a mediator complex protein encoded by intersex (ix) to activate female development. In males, the transcription factor encoded by fruitless (fru) promotes male-specific behaviour. The genetics of sex determination have been examined in a small number of other insects, yet several questions remain about the plesiomorphic state. Is dsx required for female and male development? Is fru conserved in male behaviour or morphology? Are other components such as ix functionally conserved? To address these questions, we report expression and functional tests of dsx, ix and fru in the hemipteran Oncopeltus fasciatus, characterizing three sexual dimorphisms. dsx prevents ix phenotypes in all sexes and dimorphic traits in the milkweed bug. ix and fru are expressed across the body, in females and males. fru and ix also affect the genitalia of both sexes, but have effects limited to different dimorphic structures in different sexes. These results reveal roles for ix and fru distinct from other insects, and demonstrate distinct development mechanisms in different sexually dimorphic structures.


Subject(s)
Heteroptera , Sex Characteristics , Animals , Female , Male , Cell Nucleus , DNA-Binding Proteins , Genitalia , Heteroptera/genetics , Nerve Tissue Proteins , Transcription Factors
3.
Res Sq ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38196657

ABSTRACT

Chimeric antigen receptor T cells are an effective therapy for B-lineage malignancies. However, many patients relapse and this therapeutic has yet to show strong efficacy in other hematologic or solid tumors. One opportunity for improvement lies in the ability to generate T cells with desirable functional characteristics. Here, we dissect the biology of CD8+ CAR T cells (CAR8) by controlling whether the T cell has encountered cognate TCR antigen prior to CAR generation. We find that prior antigen experience influences multiple aspects of in vitro and in vivo CAR8 functionality, resulting in superior effector function and leukemia clearance in the setting of limiting target antigen density compared to antigen-inexperienced T cells. However, this comes at the expense of inferior proliferative capacity, susceptibility to phenotypic exhaustion and dysfunction, and inability to clear wildtype leukemia in the setting of limiting CAR+ cell dose. Epigenomic and transcriptomic comparisons of these cell populations identified overexpression of the Runx2 transcription factor as a novel strategy to enhance CAR8 function, with a differential impact depending on prior cell state. Collectively, our data demonstrate that prior antigen experience determines functional attributes of a CAR T cell, as well as amenability to functional enhancement by transcription factor modulation.

4.
J Vector Borne Dis ; 54(4): 301-310, 2017.
Article in English | MEDLINE | ID: mdl-29460859

ABSTRACT

BACKGROUND & OBJECTIVES: Vector-borne pathogen surveillance programmes typically rely on the collection of large numbers of potential vectors followed by screening protocols focused on detecting pathogens in the arthropods. These processes are laborious, time consuming, expensive, and require screening of large numbers of samples. To streamline the surveillance process, increase sample throughput, and improve cost-effectiveness, a method to detect dengue virus and malaria parasites (Plasmodium falciparum) by leveraging the sugar-feeding behaviour of mosquitoes and their habit of expectorating infectious agents in their saliva during feeding was investigated in this study. METHODS: Dengue virus 2 (DENV-2) infected female Aedes aegypti mosquitoes and P. falciparum infected female Anopheles stephensi mosquitoes were allowed to feed on honey coated Flinders Technical Associates -FTA® cards dyed with blue food colouring. The feeding resulted in deposition of saliva containing either DENV-2 particles or P. falciparum sporozoites onto the FTA card. Nucleic acid was extracted from each card and the appropriate real-time PCR (qPCR) assay was run to detect the pathogen of interest. RESULTS: As little as one plaque forming unit (PFU) of DENV-2 and as few as 60 P. falciparum parasites deposited on FTA cards from infected mosquitoes were detected via qPCR. Hence, their use to collect mosquito saliva for pathogen detection is a relevant technique for vector surveillance. INTERPRETATION & CONCLUSION: This study provides laboratory confirmation that FTA cards can be used to capture and stabilize expectorated DENV-2 particles and P. falciparum sporozoites from infectious, sugar-feeding mosquitoes in very low numbers. Thus, the FTA card-based mosquito saliva capture method offers promise to overcome current limitations and revolutionize traditional mosquito-based pathogen surveillance programmes. Field testing and further method development are required to optimize this strategy.


Subject(s)
Dengue Virus/genetics , Epidemiological Monitoring , Molecular Diagnostic Techniques/methods , Plasmodium falciparum/genetics , Saliva/parasitology , Saliva/virology , Aedes/virology , Animals , Anopheles/parasitology , DNA, Protozoan/genetics , DNA, Viral/genetics , Dengue/diagnosis , Dengue/epidemiology , Dengue/virology , Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Feeding Behavior , Female , Food Coloring Agents , Malaria, Falciparum/diagnostic imaging , Malaria, Falciparum/parasitology , Molecular Diagnostic Techniques/instrumentation , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...