Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36005604

ABSTRACT

Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma ß-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (-/-) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.

2.
J Med Chem ; 58(3): 1159-83, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25590515

ABSTRACT

We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.


Subject(s)
Enzyme Inhibitors/pharmacology , Huntington Disease/drug therapy , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , CHO Cells , Cell Proliferation/drug effects , Cricetulus , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Huntington Disease/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Mice , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
3.
J Med Chem ; 55(3): 1021-46, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22224594

ABSTRACT

Tissue transglutaminase 2 (TG2) is a multifunctional protein primarily known for its calcium-dependent enzymatic protein cross-linking activity via isopeptide bond formation between glutamine and lysine residues. TG2 overexpression and activity have been found to be associated with Huntington's disease (HD); specifically, TG2 is up-regulated in the brains of HD patients and in animal models of the disease. Interestingly, genetic deletion of TG2 in two different HD mouse models, R6/1 and R6/2, results in improved phenotypes including a reduction in neuronal death and prolonged survival. Starting with phenylacrylamide screening hit 7d, we describe the SAR of this series leading to potent and selective TG2 inhibitors. The suitability of the compounds as in vitro tools to elucidate the biology of TG2 was demonstrated through mode of inhibition studies, characterization of druglike properties, and inhibition profiles in a cell lysate assay.


Subject(s)
Acrylamides/chemical synthesis , GTP-Binding Proteins/antagonists & inhibitors , Huntington Disease/drug therapy , Sulfonamides/chemical synthesis , Transglutaminases/antagonists & inhibitors , Acrylamides/chemistry , Acrylamides/pharmacology , Animals , Caco-2 Cells , Cell Membrane Permeability , HEK293 Cells , Humans , In Vitro Techniques , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Protein Glutamine gamma Glutamyltransferase 2 , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
5.
ChemMedChem ; 4(6): 963-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19301319

ABSTRACT

Heat shock protein 90 (Hsp90) plays a key role in stress response and protection of the cell against the effects of mutation. Herein we report the identification of an Hsp90 inhibitor identified by fragment screening using a high-concentration biochemical assay, as well as its optimisation by in silico searching coupled with a structure-based drug design (SBDD) approach.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Oximes/chemistry , Pyrimidines/chemistry , Binding Sites , Cell Line, Tumor , Computer Simulation , Crystallography, X-Ray , Drug Design , HSP90 Heat-Shock Proteins/metabolism , Humans , Oximes/chemical synthesis , Oximes/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...