Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916764

ABSTRACT

LIDAR (Light Detection and Ranging) sensors are one of the leading technologies that are widely considered for autonomous navigation. However, foggy and cloudy conditions might pose a serious problem for a wide adoption of their use. Polarization is a well-known mechanism often applied to improve sensors' performance in a dense atmosphere, but is still not commonly applied, to the best of our knowledge, in self-navigated devices. This article explores this issue, both theoretically and experimentally, and focuses on the dependence of the expected performance on the atmospheric interference type. We introduce a model which combines the well-known LIDAR equation with Stocks vectors and the Mueller matrix formulations in order to assess the magnitudes of the true target signal loss as well as the excess signal that arises from the scattering medium radiance, by considering the polarization state of the E-M (Electro-Magnetic) waves. Our analysis shows that using the polarization state may recover some of the poor performance of such systems for autonomous platforms in low visibility conditions, but it depends on the atmospheric medium type. This conclusion is supported by measurements held inside an aerosol chamber within a well-controlled and monitored artificial degraded visibility atmospheric environment. The presented analysis tool can be used for the optimization of design and trade-off analysis of LIDAR systems, which allow us to achieve the best performance for self-navigation in all weather conditions.

2.
Nature ; 551(7679): 210-213, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29120417

ABSTRACT

Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

SELECTION OF CITATIONS
SEARCH DETAIL
...