Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38006065

ABSTRACT

The use of cation-exchange membranes as electrolytes for lithium metal batteries can prevent the formation of lithium dendrites during extended cycling and guarantee safe battery operation. In our study, the Nafion-212 membrane in lithium form solvated by a mixture of ethylene carbonate and propylene carbonate (EC-PC) was used as an electrolyte in a lithium metal battery with the LiFePO4 cathode. The Nafion-212-EC-PC electrolyte is electrochemically stable up to 6 V, indicating its suitability for high-energy density batteries. It has an ionic conductivity of 1.9 × 10-4 S/cm at 25 °C and a high lithium transference number. The symmetric Li|Nafion-212-EC-PC|Li cell shows a very low overvoltage of ~0.3 V at a current density of ±0.1 mA/cm2. At 25 °C, the LiFePO4|Nafion-212-EC-PC|Li battery exhibits a capacity of 141, 136, 125, and 100 mAh/g at 0.1, 0.2, 0.5, and 1C rates, respectively. It maintains a capacity of 120 mAh/g at 0 °C and 0.1C with stable performance for 50 charge/discharge cycles. The mechanism of conductivity and capacity retention at low temperatures is discussed.

2.
Membranes (Basel) ; 13(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37623762

ABSTRACT

The development of accessible express methods to determine markers of viral diseases in saliva is currently an actual problem. Novel cross-sensitive sensors based on Donnan potential with bio-comparable perfluorosulfonic acid membranes for the determination of salivary viral markers (N-acetyl-L-methionine, L-carnitine, and L-lysine) were proposed. Membranes were formed by casting from dispersions of Nafion or Aquivion in N-methyl-2-pyrollidone or in a mixture of isopropyl alcohol and water. The influence of the polymer equivalent weight and the nature of dispersing liquid on water uptake, ion conductivity, and slope of Donnan potential for the membranes in H+ and Na+ form was investigated. The varying of the sorption and transport properties of perfluorosulfonic acid membranes provided a change in the distribution of the sensor sensitivity to N-acetyl-L-methionine, L-carnitine, and L-lysine ions, which was necessary for multisensory system development. The simultaneous determination of three analytes, and the group analysis of them in artificial saliva solutions, was performed. The errors of N-acetyl-L-methionine and L-carnitine determination were 4-12 and 3-11%, respectively. The determination of L-lysine was complicated by its interaction with Ca2+ ions. The error of the group analysis was no greater than 9%. The reverse character of the viral markers' sorption by the membranes provided long-term sensor operation.

3.
Membranes (Basel) ; 13(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37623782

ABSTRACT

Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.

4.
Membranes (Basel) ; 13(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37504990

ABSTRACT

The possibility of targeted change of the properties of ion exchange membranes by incorporation of various nanoparticles into the membranes is attracting the attention of many research groups. Here we studied for the first time the influence of cerium phosphate nanoparticles on the physicochemical and transport properties of commercial anion exchange membranes based on quaternary ammonium-functionalized polystyrenes, such as heterogeneous Ralex® AM and pseudo-homogeneous Neosepta® AMX. The incorporation of cerium phosphate on one side of the membrane was performed by precipitation from absorbed cerium ammonium nitrate (CAN) anionic complex with ammonium dihydrogen phosphate or phosphoric acid. The structures of the obtained hybrid membranes and separately synthesized cerium phosphate were investigated using FTIR, P31 MAS NMR, EDX mapping, and scanning electron microscopy. The modification increased the membrane selectivity to monovalent ions in the ED desalination of an equimolar mixture of NaCl and Na2SO4. The highest selectivities of Ralex® AM and Neosepta® AMX-based hybrid membranes were 4.9 and 7.7, respectively. In addition, the modification of Neosepta® membranes also increased the resistance to a typical anionic surfactant, sodium dodecylbenzenesulfonate.

5.
Membranes (Basel) ; 13(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505035

ABSTRACT

Studies have been carried out to optimize the composition, formation technique and test conditions of membrane electrode assemblies (MEA) of hydrogen-oxygen anion-exchange membranes fuel cells (AEMFC), based on Fumatech anion-exchange membranes. A non-platinum catalytic system based on nitrogen-doped CNT (CNTN) was used in the cathode. PtMo/CNTN catalysts with a reduced content of platinum (10-12 wt.% Pt) were compared with 10 and 60 wt.% Pt/CNTN at the anode. According to the results of studies under model conditions, it was found that the PtMo/CNTN catalyst is significantly superior to the 10 and 60 wt.% Pt/CNTN catalyst in terms of activity in the hydrogen oxidation reaction based on the mass of platinum. The addition of the Fumion ionomer results in minor changes in the electrochemically active surface area and activity in the hydrogen oxidation reaction for each of the catalysts. In this case, the introduction of ionomer-Fumion leads to a partial blocking of the outer surface and the micropore surface, which is most pronounced in the case of the 60Pt/CNTN catalyst. This effect can cause a decrease in the characteristics of MEA AEMFC upon passing from 10PtMo/CNTN to 60Pt/CNTN in the anode active layer. The maximum power density of the optimized MEA based on 10PtMo/CNTN was 62 mW cm-2, which exceeds the literature data obtained under similar test conditions for MEA based on platinum cathode and anode catalysts and Fumatech membranes (41 mW cm-2). A new result of this work is the study of the effect of the ionomer (Fumion) on the characteristics of catalysts. It is shown that the synthesized 10PtMo/CNTN catalyst retains high activity in the presence of an ionomer under model conditions and in the MEA based on it.

6.
Polymers (Basel) ; 15(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376327

ABSTRACT

The degradation of drugs is a substantial problem since it affects the safety and effectiveness of pharmaceutical products, as well as their influence on the environment. A novel system of three potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The membranes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. A correlation between the sorption and transport properties of the hybrid membranes and cross-sensitivity of the DP-sensor to sulfacetamide, its degradation product, and inorganic ions was revealed. The analysis of the UV-degraded sulfacetamide drugs using the multisensory system based on hybrid membranes with optimized properties did not require a pre-separation of the components. The limits of detection of sulfacetamide, sulfanilamide, and sodium were 1.8 × 10-7, 5.8 × 10-7, and 1.8 × 10-7 M. The relative errors of the determination of the components of the UV-degraded sulfacetamide drugs were 2-3% (at 6-8% relative standard deviation). PFSA/CNT hybrid materials provided the stable work of the sensors for at least one year.

7.
Dalton Trans ; 52(24): 8237-8246, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37249348

ABSTRACT

Hydrogen-bonded organic frameworks (HOFs) possessing high crystallinity, simple synthetic procedure and easy regeneration provide high efficiency as multifunctional systems, including applications as proton conductors. Porphyrinylphosphonates having acidic moieties, which can form multiple hydrogen bonds, together with tunable physical-chemical properties of a macrocycle may significantly improve the proton conductivity of such materials. Herein, the synthesis, characterization and proton-conducting properties of a novel anionic HOF based on a new complex of palladium(II) with meso-tetrakis(4-(phosphonatophenyl))porphyrin, HOF-IPCE-1Pd, are reported. Directed structural transformation of the framework by the exchange of dimethylammonium counterions for ammonium cations along with the absorption of ammonia and water molecules led to the formation of a more hydrolytically stable structure of HOF-IPCE-1Pd-NH3, demonstrating the proton conductivity of 1.27 × 10-3 S cm-1 at 85 °C and 85% RH, which is one of the highest among all known HOFs based on porphyrins. It is noteworthy that the reversible absorbance of water/ammonia molecules preserves the crystal structure of HOF-IPCE-1Pd-NH3.

8.
Membranes (Basel) ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36984697

ABSTRACT

A novel potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. The potentiometric sensors (Donnan potential (DP) was used as an analytical signal) with an inner reference solution were based on perfluorosulfonic acid (PFSA) membranes modified with polyaniline (PANI) by in situ oxidative polymerization. The order of the membrane treatment with precursor solutions and their concentrations was varied. Additionally, the PFSA/PANI composite membranes were hydrothermally treated at 120 °C. The influence of the preparation conditions and the composition of membranes on their sorption and transport properties was studied. We estimated the factors affecting the sensitivity of DP-sensors based on the PFSA/PANI composite membranes to ions of sulfamethoxazole and trimethoprim simultaneously presented in solutions. A developed multisensory system provided a simultaneous determination of two analytes in aqueous solutions without preliminary separation, derivatization, or probe treatment. The re-estimation of the calibration characteristics of the multisensory system did not show a statistically significant difference after a year of its use. The limits of detection of sulfamethoxazole and trimethoprim were 1.4 × 10-6 and 8.5 × 10-8 M, while the relative errors of their determination in the combination drug were 4 and 5% (at 5 and 6% relative standard deviation), respectively.

9.
Polymers (Basel) ; 15(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36771946

ABSTRACT

Ion exchange membranes are widely used for water treatment and ion separation by electrodialysis. One of the ways to increase the efficiency of industrial membranes is their modification with various dopants. To improve the membrane permselectivity, a simple strategy of the membrane surface modification was proposed. Heterogeneous RALEX-CM membranes were surface-modified by ceria with a phosphate-functionalized surface. Despite a decrease in ionic conductivity of the prepared composite membranes, their cation transport numbers slightly increase. Moreover, the modified membranes show a threefold increase in Ca2+/Na+ permselectivity (from 2.1 to 6.1) at low current densities.

10.
Polymers (Basel) ; 14(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501669

ABSTRACT

Perfluorosulfonic acid Nafion membranes are widely used as an electrolyte in electrolysis processes and in fuel cells. Changing the preparation and pretreatment conditions of Nafion membranes allows for the optimization of their properties. In this work, a Nafion-NMP membrane with a higher conductivity than the commercial Nafion® 212 membrane (11.5 and 8.7 mS∙cm-1 in contact with water at t = 30 °C) and a comparable hydrogen permeability was obtained by casting from a Nafion dispersion in N-methyl-2-pyrrolidone. Since the ion-exchange capacity and the water uptake of these membranes are similar, it can be assumed that the increase in conductivity is the result of optimizing the Nafion-NMP microstructure by improving the connectivity of the pores and channels system. This leads to a 27% increase in the capacity of the membrane electrode assembly with the Nafion-NMP membrane compared to the Nafion® 212 membrane. Thus, the method of obtaining a Nafion membrane has a great influence on its properties and performance of fuel cells based on them.

11.
Membranes (Basel) ; 12(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363633

ABSTRACT

Polybenzimidazoles (PBI) doped with phosphoric acid (PA) are promising electrolytes for medium temperature fuel cells. Their significant disadvantage is a partial or complete loss of mechanical properties and an increase in hydrogen permeability at elevated temperatures. Covalent silanol crosslinking is one possible way to stabilize PBI membranes in the presence of PA. Three organo-substituted silanes, namely (3-Bromopropyl)trimethoxysilane (SiBr), trimethoxy [2-(7-oxabicyclo [4.1.0]hept-3-yl)ethyl]silane (Si-biC) and (3-Glycidyloxypropyl)trimethoxysilane (KH 560), were used as covalent crosslinkers of PBI-O-PhT in order to determine the effect of the silane structure and crosslinking degree on membrane properties. The crosslinking degree was 1-50%. All crosslinked membranes were characterized by impedance and IR-spectroscopy. The mechanical properties, morphology, stability and hydrogen permeability of the membranes were determined. In the case of silanes with linear substituents (SiBr, KH 560), a denser structure is formed, which is characterized by greater oxidative stability and lower hydrogen permeability in comparison to the silane with a bulk group. All the crosslinked membranes have a higher mechanical strength compared with the initial PBI-O-PhT membrane both before and after doping with PA. Despite the hardening of the polymer matrix of the membranes, their proton conductivity changes insignificantly. It was shown that cross-linked membranes can be used in fuel cells.

12.
Membranes (Basel) ; 12(11)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36363646

ABSTRACT

Sulfamethoxazole and trimethoprim are synthetic bacteriostatic drugs. A potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. Perfluorosulfonic acid membranes containing functionalized CNTs were used as the sensor materials. The CNTs' surface was modified by carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. The influence of the CNT concentration and the properties of their surface, as well as preliminary ultrasonic treatment of the polymer and CNT solution before the casting of hybrid membranes, on their ion-exchange capacity, water uptake, and transport properties was revealed. Cross-sensitivity of the sensors to the analytes was achieved due to ion exchange and hydrophobic interactions with hybrid membranes. An array of cross-sensitive sensors based on the membranes containing 1.0 wt% of CNTs with sulfonic acid or (3-aminopropyl)trimethoxysilanol groups enabled us to provide the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous solutions with a concentration ranging from 1.0 × 10-5 to 1.0 × 10-3 M (pH 4.53-8.31). The detection limits of sulfamethoxazole and trimethoprim were 3.5 × 10-7 and 1.3 × 10-7 М. The relative errors of sulfamethoxazole and trimethoprim determination in the combination drug as compared with the content declared by the manufacturer were 4% (at 6% RSD) and 5% (at 7% RSD).

13.
Polymers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145977

ABSTRACT

Proton-exchange membranes based on gamma-irradiated films of PVDF and radiation-grafted sulfonated polystyrene with an ion-exchange capacity of 1.8 meq/g and crosslinking degrees of 0 and 3% were synthesized. A solvent-free, environmentally friendly method of styrene grafting from its aqueous emulsion, with a styrene content of only 5 vol.% was used. Energy dispersive X-ray mapping analysis showed that the grafted sulfonated polystyrene is uniformly distributed throughout the membrane thickness. The obtained materials had a proton conductivity up to 132 mS/cm at 80 °C and a hydrogen permeability of up to 5.2 cm2/s at 30 °C, which significantly exceeded similar values for Nafion®-212 membranes. The resulting membranes exhibited a H2/O2 fuel cell peak power density of up to 0.4 W/cm2 at 65 °C. Accelerated stability tests showed that adding a crosslinking agent could significantly increase the stability of the membranes in the fuel cells. The thermal properties and crystallinity of the membranes were investigated through differential scanning calorimetry and X-ray powder diffraction methods. The conductivity, water uptake, and mechanical properties of the membranes (stress-strain curves) were also characterized.

14.
Polymers (Basel) ; 14(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35808592

ABSTRACT

The degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose. The sensor cross-sensitivity to related analytes was achieved using perfluorosulfonic acid membranes with poly(3,4-ethylenedioxythiophene) or polyaniline as dopants. The composite membranes were prepared by oxidative polymerization and characterized using FTIR and UV-Vis spectroscopy, and SEM. The influence of the preparation procedure and the dopant concentration on the membrane hydrophilicity, ion-exchange capacity, water uptake, and transport properties was investigated. The characteristics of the potentiometric sensors in aqueous solutions containing sulfanilamide, sulfacetamide and alkali metals ions in a wide pH range were established. The introduction of proton-acceptor groups and π-conjugated moieties into the perfluorosulfonic acid membranes increased the sensor sensitivity to organic analytes. The relative errors of sulfacetamide and sulfanilamide determination in the UV-degraded eye drops were 1.2 to 1.4 and 1.7 to 4%, respectively, at relative standard deviation of 6 to 9%.

15.
Int J Mol Sci ; 23(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35682891

ABSTRACT

In the present study, the possibility of using a spiral-wound diffusion dialysis module was studied for the separation of hydrochloric acid and Zn2+, Ni2+, Cr3+, and Fe2+ salts. Diffusion dialysis recovered 68% of free HCl from the spent pickling solution contaminated with heavy-metal-ion salts. A higher volumetric flowrate of the stripping medium recovered a more significant portion of free acid, namely, 77%. Transition metals (Fe, Ni, Cr) apart from Zn were rejected by >85%. Low retention of Zn (35%) relates to the diffusion of negatively charged chloro complexes through the anion-exchange membrane. The mechanical and transport properties of dialysis FAD-PET membrane under accelerated degradation conditions was investigated. Long-term tests coupled with the economic study have verified that diffusion dialysis is a suitable method for the treatment of spent acids, the salts of which are well soluble in water. Calculations predict significant annual OPEX savings, approximately up to 58%, favouring diffusion dialysis for implementation into wastewater management.


Subject(s)
Hydrochloric Acid , Metals, Heavy , Acids , Metals, Heavy/analysis , Renal Dialysis , Salts , Wastewater
16.
Membranes (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36676820

ABSTRACT

Nafion is a perfluorosulfonic acid polymer that is most commonly used in proton-exchange membrane fuel cells. The processes of pretreatment and formation of such membranes strongly affect their properties. In this work, dispersions of Nafion in various ionic forms and dispersing liquids (ethylene glycol, N,N-dimethylformamide, N-methyl-2-pyrrolidone and isopropyl alcohol-water mixtures in different ratios) were obtained and studied. Membranes fabricated by casting of the various dispersions were also studied. The effect of the nature of the dispersing liquid and the counterion on the properties of Nafion dispersions, the morphology of the polymer in the dispersions and the characteristics of the membranes obtained from them has been shown. Based on the overall results, it can be concluded that the use of perfluorosulfonic acid dispersions in aprotic polar solvents is advisable for obtaining membranes by the casting procedure. This is because it provides optimal polymer morphology in the dispersion, which leads to the formation of films with good selectivity, mechanical and transport properties. The performed investigations show the relationship between the composition of dispersions, the morphology of the polymer and the properties of the membranes formed from them by the casting procedure.

17.
Polymers (Basel) ; 13(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372117

ABSTRACT

Low chemical durability of proton exchange membranes is one the main factors limiting their lifetime in fuel cells. Ceria nanoparticles are the most common free radical scavengers. In this work, hybrid membranes based on Nafion-117 membrane and sulfonic or phosphoric acid functionalized ceria synthesized from various precursors were prepared by the in situ method for the first time. Ceria introduction led to a slight decrease in conductivity of hybrid membranes in contact with water. At the same time, conductivity of membranes containing sulfonic acid modified ceria exceeded that of the pristine Nafion-117 membrane at 30% relative humidity (RH). Hydrogen permeability decreased for composite membranes with ceria synthesized from cerium (III) nitrate, which correlates with their water uptake. In hydrogen-air fuel cells, membrane electrode assembly fabricated with the hybrid membrane containing ceria synthesized from cerium (IV) sulfate exhibited a peak power density of 433 mW/cm2 at a current density of 1080 mA/cm2, while operating at 60 °C and 70% RH. It was 1.5 times higher than for the pristine Nafion-117 membrane (287 mW/cm2 at a current density of 714 mA/cm2).

18.
Membranes (Basel) ; 11(3)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799886

ABSTRACT

Membrane technologies are widely demanded in a number of modern industries. Ion-exchange membranes are one of the most widespread and demanded types of membranes. Their main task is the selective transfer of certain ions and prevention of transfer of other ions or molecules, and the most important characteristics are ionic conductivity and selectivity of transfer processes. Both parameters are determined by ionic and molecular mobility in membranes. To study this mobility, the main techniques used are nuclear magnetic resonance and impedance spectroscopy. In this comprehensive review, mechanisms of transfer processes in various ion-exchange membranes, including homogeneous, heterogeneous, and hybrid ones, are discussed. Correlations of structures of ion-exchange membranes and their hydration with ion transport mechanisms are also reviewed. The features of proton transfer, which plays a decisive role in the membrane used in fuel cells and electrolyzers, are highlighted. These devices largely determine development of hydrogen energy in the modern world. The features of ion transfer in heterogeneous and hybrid membranes with inorganic nanoparticles are also discussed.

19.
Dalton Trans ; 50(19): 6549-6560, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33890610

ABSTRACT

The rational design of metal-organic frameworks (MOFs) is highly important for the development of new proton conductors. Porphyrinylphosphonate-based MOFs, providing the directed tuning of physical and chemical properties of materials through the modification of a macrocycle, are potentially high-conducting systems. In this work the synthesis and characterization of novel anionic Zn-containing MOF based on palladium(ii) meso-tetrakis(3-(phosphonatophenyl))porphyrinate, IPCE-2Pd, are reported. Moreover, the proton-conductive properties and structures of two anionic Zn-containing MOFs based on previously described nickel(ii) and novel palladium(ii) porphyrinylphosphonates, IPCE-2M (M = Ni(ii) or Pd(ii)), are compared in details. The high proton conductivity of 1.0 × 10-2 S cm-1 at 75 °C and 95% relative humidity (RH) is revealed for IPCE-2Ni, while IPCE-2Pd exhibits higher hydrolytic and thermal stability of the material (up to 420 °C) simultaneously maintaining a comparable value of conductivity (8.11 × 10-3 S cm-1 at 95 °C and 95% RH). The nature of the porphyrin metal center is responsible for the features of crystal structure of materials, obtained under identical reaction conditions. The structures of IPCE-2Pd and its dehydrated derivative IPCE-2Pd-HT are determined from the synchrotron powder diffraction data. The presence of phosphonic groups in compared materials IPCE-2M affords a high concentration of proton carriers that together with the sorption of water molecules leads to a high proton conductivity.

20.
Chemistry ; 27(5): 1598-1602, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33017090

ABSTRACT

A novel metal-organic framework [Zn3 (Ni-H2 TPPP)(Ni-H4 TPPP)(Ni-H5 TPPP)⋅7(CH3 )2 NH2 ⋅DMF⋅7 H2 O] (where Ni-Hx TPPP (x=2,4,5) are partially deprotonated [5,10,15,20-tetrakis(3-(phosphonatophenyl)-porphyrinato(2-))]nickel(II) species), IPCE-2Ni, with outstanding proton conductivity (1.0×10-2  S cm-1 at 75 °C and 95 % relative humidity) has been obtained. The high concentration of free phosphonate groups and compensating dimethylammonium cations bound by hydrogen bonds in the unique crystal structure of IPCE-2Ni is a key factor responsible for the observed high proton conductivity, which is one order of magnitude higher than for the corresponding MOF based on 5,10,15,20-tetrakis(4-(phosphonatophenyl)porphyrinato(2-))]nickel(II) IPCE-1Ni and comparable with that of leaders among MOFs.

SELECTION OF CITATIONS
SEARCH DETAIL
...