Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurooncol Adv ; 4(1): vdac132, 2022.
Article in English | MEDLINE | ID: mdl-36199973

ABSTRACT

Background: The abscopal effect is a rare phenomenon whereby local radiation induces a proposed immune-mediated anti-tumor effect at distant sites. Given the growing use of immunotherapies and systemic immune checkpoint inhibitors in neuro-oncologic practice, we aimed to review prior studies pertaining to this phenomenon in the context of tumor shrinkage both within the central nervous system as well as distant disease sites. Methods: A systematic review in accordance with the PRISMA guidelines was conducted to identify all studies which assessed the abscopal effect in patients with treated metastatic cancer to the brain and/or spine. Articles were included if they reported the abscopal effect in patients (case studies) or if the abscopal effect was explicitly analyzed in case series with cohorts of patients with metastatic brain or spine tumors. Laboratory investigations and clinical trials investigating new therapies were excluded. Results: Twenty reports met inclusion criteria [16 case reports, 4 case series (n = 160), total n = 174]. Case reports of the abscopal effect were in relation to the following cancers: melanoma (6 patients), breast cancer (3), lung adenocarcinoma (2), non-small-cell lung cancer (2), hepatocellular carcinoma (1), and renal cell carcinoma (1). Eleven patients had irradiation to the brain and 2 to the spine. Patients undergoing whole brain radiotherapy (6) had an average dose of 33.6 Gy over 8-15 fractions, and those undergoing stereotactic radiosurgery (5) had an average dose of 21.5 Gy over 1-5 fractions. One patient had radiation to the body and an intracranial abscopal effect was observed. Most common sites of extracranial tumor reduction were lung and lymph nodes. Ten case studies (57%) showed complete resolution of extra-CNS tumor burden. Median progression-free survival was 13 months following radiation. Four papers investigated incidence of abscopal effects in patients with metastatic melanoma to the brain who received immune checkpoint inhibitor therapy (n = 160); two papers found an abscopal effect in 35% and 52% of patients (n = 16, 21 respectively), and two papers found no evidence of abscopal effects (n = 61, 62). Conclusions: Abscopal effects can occur following radiotherapy in patients with brain or spine metastases and is thought to be a result of increased anti-tumor immunity. The potential for immune checkpoint inhibitor therapy to be used in combination with radiotherapy to induce an abscopal effect is an area of active investigation.

2.
Neurosurg Focus ; 52(1): E15, 2022 01.
Article in English | MEDLINE | ID: mdl-34973668

ABSTRACT

OBJECTIVE: The utility of robotic instrumentation is expanding in neurosurgery. Despite this, successful examples of robotic implementation for endoscopic endonasal or skull base neurosurgery remain limited. Therefore, the authors performed a systematic review of the literature to identify all articles that used robotic systems to access the sella or anterior, middle, or posterior cranial fossae. METHODS: A systematic review of MEDLINE and PubMed in accordance with PRISMA guidelines performed for articles published between January 1, 1990, and August 1, 2021, was conducted to identify all robotic systems (autonomous, semiautonomous, or surgeon-controlled) used for skull base neurosurgical procedures. Cadaveric and human clinical studies were included. Studies with exclusively otorhinolaryngological applications or using robotic microscopes were excluded. RESULTS: A total of 561 studies were identified from the initial search, of which 22 were included following full-text review. Transoral robotic surgery (TORS) using the da Vinci Surgical System was the most widely reported system (4 studies) utilized for skull base and pituitary fossa procedures; additionally, it has been reported for resection of sellar masses in 4 patients. Seven cadaveric studies used the da Vinci Surgical System to access the skull base using alternative, non-TORS approaches (e.g., transnasal, transmaxillary, and supraorbital). Five cadaveric studies investigated alternative systems to access the skull base. Six studies investigated the use of robotic endoscope holders. Advantages to robotic applications in skull base neurosurgery included improved lighting and 3D visualization, replication of more traditional gesture-based movements, and the ability for dexterous movements ordinarily constrained by small operative corridors. Limitations included the size and angulation capacity of the robot, lack of drilling components preventing fully robotic procedures, and cost. Robotic endoscope holders may have been particularly advantageous when the use of a surgical assistant or second surgeon was limited. CONCLUSIONS: Robotic skull base neurosurgery has been growing in popularity and feasibility, but significant limitations remain. While robotic systems seem to have allowed for greater maneuverability and 3D visualization, their size and lack of neurosurgery-specific tools have continued to prevent widespread adoption into current practice. The next generation of robotic technologies should prioritize overcoming these limitations.


Subject(s)
Neurosurgery , Robotic Surgical Procedures , Robotics , Humans , Neurosurgical Procedures , Robotic Surgical Procedures/methods , Skull Base/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...