Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 13(11): 5367-72, 2013.
Article in English | MEDLINE | ID: mdl-24134708

ABSTRACT

We use polarized photoluminescence excitation spectroscopy to observe the energy and symmetry of the predicted second conduction band in 130 nm diameter wurtzite InP nanowires. We find direct spectroscopic signatures for optical transitions among the A, B, and C hole bands and both the first and the second conduction bands. We determine that the splitting between the first and second conduction bands is 228 ± 7 meV in excellent agreement with theory. From these energies we show that the spin-orbit energy changes substantially between zinc blende and wurtzite InP. We discuss the two quite different solutions within the quasi-cubic approximation and the implications for these measurements. Finally, the observation of well-defined optical transitions between the B- and C-hole bands and the second conduction band suggests that either the theoretical description of the second conduction band as possessing Γ8 symmetry is incomplete, or other interactions are enabling these forbidden transitions.


Subject(s)
Indium/chemistry , Nanowires/chemistry , Orbit , Phosphines/chemistry , Zinc/chemistry , Light , Particle Size , Spectrum Analysis , Surface Properties
2.
Nano Lett ; 13(3): 1016-22, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23421755

ABSTRACT

The electronic properties of thin, nanometer scale GaAs quantum well tubes embedded inside the AlGaAs shell of a GaAs core-multishell nanowire are investigated using optical spectroscopies. Using numerical simulations to model cylindrically and hexagonally symmetric systems, we correlate these electronic properties with structural characterization by aberration-corrected scanning transmission electron microscopy of nanowire cross sections. These tubular quantum wells exhibit extremely high quantum efficiency and intense emission for extremely low submicrowatt excitation powers in both photoluminescence and photoluminescence excitation measurements. Numerical calculations of the confined eigenstates suggest that the electrons and holes in their ground states are confined to extremely localized one-dimensional filaments at the corners of the hexagonal structure which extend along the length of the nanowire.

3.
Nano Lett ; 12(10): 5389-95, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22974064

ABSTRACT

Using a new technique, transient Rayleigh scattering, we show that measurements from a single GaAs/AlGaAs core-shell semiconductor nanowire provide sensitive and detailed information on the time evolution of the density and temperature of the electrons and holes after photoexcitation by an intense laser pulse. Through band filling, band gap renormalization, and plasma screening, the presence of a dense and hot electron-hole plasma directly influences the real and imaginary parts of the complex index of refraction that in turn affects the spectral dependence of the Rayleigh scattering cross-section in well-defined ways. By measuring this spectral dependence as a function of time, we directly determine the thermodynamically independent density and temperature of the electrons and holes as a function of time after pulsed excitation as the carriers thermalize to the lattice temperature. We successfully model the results by including ambipolar transport, recombination, and cooling through optic and acoustic phonon emission that quantify the hole mobility at ∼68,000 cm(2)/V·s, linear decay constant at 380 ps, bimolecular recombination rate at 4.8 × 10(-9) cm(3)/s and the energy-loss rate of plasma due to optical and acoustic phonon emission.

4.
Nano Lett ; 11(10): 4329-36, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21894948

ABSTRACT

The internal electronic structures of single semiconductor nanowires can be resolved using photomodulated Rayleigh scattering spectroscopy. The Rayleigh scattering from semiconductor nanowires is strongly polarization sensitive which allows a nearly background-free method for detecting only the light that is scattered from a single nanowire. While the Rayleigh scattering efficiency from a semiconductor nanowire depends on the dielectric contrast, it is relatively featureless as a function of energy. However, if the nanowire is photomodulated using a second pump laser beam, the internal electronic structure can be resolved with extremely high signal-to-noise and spectral resolution. The photomodulated Rayleigh scattering spectra can be understood theoretically as a first derivative of the scattering efficiency that results from a modulation of the band gap and depends sensitively on the nanowire diameter. Fits to spectral lineshapes provide both the band structure and the diameter of individual GaAs and InP nanowires under investigation.

5.
Nano Lett ; 9(2): 695-701, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19115835

ABSTRACT

In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.

6.
Nano Lett ; 7(11): 3383-7, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17902724

ABSTRACT

Low-temperature time-resolved photoluminescence spectroscopy is used to probe the dynamics of photoexcited carriers in single InP nanowires. At early times after pulsed excitation, the photoluminescence line shape displays a characteristic broadening, consistent with emission from a degenerate, high-density electron-hole plasma. As the electron-hole plasma cools and the carrier density decreases, the emission rapidly converges toward a relatively narrow band consistent with free exciton emission from the InP nanowire. The free excitons in these single InP nanowires exhibit recombination lifetimes closely approaching that measured in a high-quality epilayer, suggesting that in these InP nanowires, electrons and holes are relatively insensitive to surface states. This results in higher quantum efficiencies than other single-nanowire systems as well as significant state-filling and band gap renormalization, which is observed at high electron-hole carrier densities.


Subject(s)
Indium/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Phosphines/chemistry , Silicon/chemistry , Electrons , Light , Microscopy, Electron, Transmission , Semiconductors , Time Factors
7.
Nano Lett ; 7(3): 588-95, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17300213

ABSTRACT

Nonequilibrium spin distributions in single GaAs/AlGaAs core-shell nanowires are excited using resonant polarized excitation at 10 K. At all excitation energies, we observe strong photoluminescence polarization due to suppressed radiative recombination of excitons with dipoles aligned perpendicular to the nanowire. Excitation resonances are observed at 1- or 2-LO phonon energies above the exciton ground states. Using rate equation modeling, we show that, at the lowest energies, strongly nonequilibrium spin distributions are present and we estimate their spin relaxation rate.

8.
Opt Express ; 14(17): 7931-42, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-19529162

ABSTRACT

A highly efficient design of a two-channel wavelength demultiplexer in the visible region is presented with finite-difference time-domain simulations. The design process is described in detail with particular attention to the challenges inherent in fabrication of an actual device. A 2D triangular lattice photonic crystal with 75nm air pores in a silicon nitride planar waveguide provides the confinement for visible light. The device losses due to fabrication errors such as stitching misalignment of write fields during e-beam lithography and variation in air pore diameters from etching are modeled using realistic parameters from initial fabrication runs. These simulation results will be used to guide our next generation design of high efficiency photonic crystal based demultiplexing devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...