Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Solut ; 23(1): 137-66, 2013.
Article in English | MEDLINE | ID: mdl-23552652

ABSTRACT

The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.


Subject(s)
Community Networks , Extraction and Processing Industry/methods , Risk Assessment/organization & administration , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Drinking Water/chemistry , Environmental Monitoring/methods , United States
2.
Biosystems ; 92(3): 233-44, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18448239

ABSTRACT

Ecological boundaries have been described as being multiscalar or hierarchical entities. However, the concept of the ecological boundary has not been explicitly examined in the context of hierarchy theory. We explore how ecological boundaries might be envisioned as constituents of scalar hierarchical systems. Boundaries may be represented by the surfaces of constituents or as constituents themselves. Where surfaces would correspond to abrupt transition zones, boundary systems might be quite varied depending on hierarchical context. We conclude that hierarchy theory is compatible with a functional vision of ecological boundaries where functions can be largely represented as the processing or filtering of ecological signals. Furthermore, we postulate that emergent ecological boundaries that arise on a new hierarchical level may contribute to the overconnectedness of mature ecosystems. Nevertheless, a thermodynamic approach to the emergence and development of boundary systems does indicate that in many situations, ecological boundaries would persist in time by contributing to the energy production of higher hierarchical levels.


Subject(s)
Ecology , Models, Biological , Software , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...