Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-292631

ABSTRACT

The spread of SARS-CoV-2 confers a serious threat to the public health without effective intervention strategies1-3. Its variant carrying mutated Spike (S) protein D614G (SD614G) has become the most prevalent form in the current global pandemic4,5. We have identified a large panel of potential neutralizing antibodies (NAbs) targeting the receptor-binding domain (RBD) of SARS-CoV-2 S6. Here, we focused on the top 20 potential NAbs for the mechanism study. Of them, the top 4 NAbs could individually neutralize both authentic SARS-CoV-2 and SD614G pseudovirus efficiently. Our epitope mapping revealed that 16/20 potent NAbs overlapped the same steric epitope. Excitingly, we found that one of these potent NAbs (58G6) exclusively bound to a linear epitope on S-RBD (termed as 58G6e), and the interaction of 58G6e and the recombinant ACE2 could be blocked by 58G6. We confirmed that 58G6e represented a key site of vulnerability on S-RBD and it could positively react with COVID-19 convalescent patients plasma. We are the first, as far as we know, to provide direct evidences of a linear epitope that can be recognized by a potent NAb against SARS-CoV-2 S-RBD. This study paves the way for the applications of these NAbs and the potential safe and effective vaccine design.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-253369

ABSTRACT

Neutralizing antibodies (Abs) have been considered as promising therapeutics for the prevention and treatment of pathogens. After the outbreak of COVID-19, potent neutralizing Abs to SARS-CoV-2 were promptly developed, and a few of those neutralizing Abs are being tested in clinical studies. However, there were few methodologies detailly reported on how to rapidly and efficiently generate neutralizing Abs of interest. Here, we present a strategically optimized method for precisive screening of neutralizing monoclonal antibodies (mAbs), which enabled us to identify SARS-CoV-2 receptor-binding domain (RBD) specific Abs within 4 days, followed by another 2 days for neutralization activity evaluation. By applying the screening system, we obtained 198 Abs against the RBD of SARS-CoV-2. Excitingly, we found that approximately 50% (96/198) of them were candidate neutralizing Abs in a preliminary screening of SARS-CoV-2 pseudovirus and 20 of these 96 neutralizing Abs were confirmed with high potency. Furthermore, 2 mAbs with the highest neutralizing potency were identified to block authentic SARS-CoV-2 with the half-maximal inhibitory concentration (IC50) at concentrations of 9.88 ng/ml and 11.13 ng/ml. In this report, we demonstrated that the optimized neutralizing Abs screening system is useful for the rapid and efficient discovery of potent neutralizing Abs against SARS-CoV-2. Our study provides a methodology for the generation of preventive and therapeutic antibody drugs for emerging infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL