Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Explor ; 6(7): e1115, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968174

ABSTRACT

OBJECTIVES: Our study aimed to assess the time to positivity (TTP) of clinically significant blood cultures in critically ill children admitted to the PICU. DESIGN: Retrospective review of positive blood cultures in patients admitted or transferred to the PICU. SETTING: Large tertiary-care medical center with over 90 PICU beds. PATIENTS: Patients 0-20 years old with bacteremia admitted or transferred to the PICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The primary endpoint was the TTP, defined as time from blood culture draw to initial Gram stain result. Secondary endpoints included percentage of cultures reported by elapsed time, as well as the impact of pathogen and host immune status on TTP. Host immune status was classified as previously healthy, standard risk, or immunocompromised. Linear regression for TTP was performed to account for age, blood volume, and Gram stain. Among 164 episodes of clinically significant bacteremia, the median TTP was 13.3 hours (interquartile range, 10.7-16.8 hr). Enterobacterales, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus pneumoniae were most commonly identified. By 12, 24, 36, and 48 hours, 37%, 89%, 95%, and 97% of positive cultures had resulted positive, respectively. Median TTP stratified by host immune status was 13.2 hours for previously healthy patients, 14.0 hours for those considered standard risk, and 10.6 hours for immunocompromised patients (p = 0.001). Median TTP was found to be independent of blood volume. No difference was seen in TTP for Gram-negative vs. Gram-positive organisms (12.2 vs. 13.9 hr; p = 0.2). CONCLUSIONS: Among critically ill children, 95% of clinically significant blood cultures had an initial positive result within 36 hours, regardless of host immune status. Need for antimicrobial therapy should be frequently reassessed and implementation of a shorter duration of empiric antibiotics should be considered in patients with low suspicion for infection.


Subject(s)
Bacteremia , Blood Culture , Critical Illness , Intensive Care Units, Pediatric , Humans , Child, Preschool , Intensive Care Units, Pediatric/statistics & numerical data , Retrospective Studies , Child , Infant , Bacteremia/diagnosis , Bacteremia/microbiology , Bacteremia/blood , Male , Female , Adolescent , Time Factors , Infant, Newborn , Young Adult
2.
Semin Pediatr Surg ; 31(3): 151179, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35725051

ABSTRACT

Pediatric lung transplantation is a highly specialized treatment option at a select few hospitals caring for children. Advancements in surgical and medical approaches in the care of these children have improved their care with only minimal improvement in outcomes which remain the lowest of all solid organ transplants. A crucial time period in the management of these children is in the perioperative period after performance of the lung transplant. Supporting allograft function, preventing infection, maintaining fluid balance, achieving pain control, and providing optimal respiratory support are all key factors required for this highly complex pediatric patient population. We review commonly encountered complications that these patients often experience and provide strategies for management.


Subject(s)
Lung Transplantation , Organ Transplantation , Child , Humans , Lung Transplantation/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Postoperative Complications/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...