Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Neuroinflammation ; 21(1): 141, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807149

ABSTRACT

The lectin pathway (LP) of complement mediates inflammatory processes linked to tissue damage and loss of function following traumatic brain injury (TBI). LP activation triggers a cascade of proteolytic events initiated by LP specific enzymes called MASPs (for Mannan-binding lectin Associated Serine Proteases). Elevated serum and brain levels of MASP-2, the effector enzyme of the LP, were previously reported to be associated with the severity of tissue injury and poor outcomes in patients with TBI. To evaluate the therapeutic potential of LP inhibition in TBI, we first conducted a pilot study testing the effect of an inhibitory MASP-2 antibody (α-MASP-2), administered systemically at 4 and 24 h post-TBI in a mouse model of controlled cortical impact (CCI). Treatment with α-MASP-2 reduced sensorimotor and cognitive deficits for up to 5 weeks post-TBI. As previous studies by others postulated a critical role of MASP-1 in LP activation, we conducted an additional study that also assessed treatment with an inhibitory MASP-1 antibody (α-MASP-1). A total of 78 mice were treated intraperitoneally with either α-MASP-2, or α-MASP-1, or an isotype control antibody 4 h and 24 h after TBI or sham injury. An amelioration of the cognitive deficits assessed by Barnes Maze, prespecified as the primary study endpoint, was exclusively observed in the α-MASP-2-treated group. The behavioral data were paralleled by a reduction of the lesion size when evaluated histologically and by reduced systemic LP activity. Our data suggest that inhibition of the LP effector enzyme MASP-2 is a promising treatment strategy to limit neurological deficits and tissue loss following TBI. Our work has translational value because a MASP-2 antibody has already completed multiple late-stage clinical trials in other indications and we used a clinically relevant treatment protocol testing the therapeutic mechanism of MASP-2 inhibition in TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Mannose-Binding Protein-Associated Serine Proteases , Mice, Inbred C57BL , Animals , Mannose-Binding Protein-Associated Serine Proteases/antagonists & inhibitors , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Mice , Male , Cognition Disorders/etiology , Cognition Disorders/drug therapy , Maze Learning/drug effects , Maze Learning/physiology
2.
Front Immunol ; 14: 1297352, 2023.
Article in English | MEDLINE | ID: mdl-38022610

ABSTRACT

Introduction: Overactivation of the lectin pathway of complement plays a pathogenic role in a broad range of immune-mediated and inflammatory disorders; mannan-binding lectin-associated serine protease-2 (MASP-2) is the key effector enzyme of the lectin pathway. We developed a fully human monoclonal antibody, narsoplimab, to bind to MASP-2 and specifically inhibit lectin pathway activation. Herein, we describe the preclinical characterization of narsoplimab that supports its evaluation in clinical trials. Methods and results: ELISA binding studies demonstrated that narsoplimab interacted with both zymogen and enzymatically active forms of human MASP-2 with high affinity (KD 0.062 and 0.089 nM, respectively) and a selectivity ratio of >5,000-fold relative to closely related serine proteases C1r, C1s, MASP-1, and MASP-3. Interaction studies using surface plasmon resonance and ELISA demonstrated approximately 100-fold greater binding affinity for intact narsoplimab compared to a monovalent antigen binding fragment, suggesting an important contribution of functional bivalency to high-affinity binding. In functional assays conducted in dilute serum under pathway-specific assay conditions, narsoplimab selectively inhibited lectin pathway-dependent activation of C5b-9 with high potency (IC50 ~ 1 nM) but had no observable effect on classical pathway or alternative pathway activity at concentrations up to 500 nM. In functional assays conducted in 90% serum, narsoplimab inhibited lectin pathway activation in human serum with high potency (IC50 ~ 3.4 nM) whereas its potency in cynomolgus monkey serum was approximately 10-fold lower (IC50 ~ 33 nM). Following single dose intravenous administration to cynomolgus monkeys, narsoplimab exposure increased in an approximately dose-proportional manner. Clear dose-dependent pharmacodynamic responses were observed at doses >1.5 mg/kg, as evidenced by a reduction in lectin pathway activity assessed ex vivo that increased in magnitude and duration with increasing dose. Analysis of pharmacokinetic and pharmacodynamic data revealed a well-defined concentration-effect relationship with an ex vivo EC50 value of approximately 6.1 µg/mL, which was comparable to the in vitro functional potency (IC50 33 nM; ~ 5 µg/mL). Discussion: Based on these results, narsoplimab has been evaluated in clinical trials for the treatment of conditions associated with inappropriate lectin pathway activation, such as hematopoietic stem cell transplantation-associated thrombotic microangiopathy.


Subject(s)
Lectins , Mannose-Binding Protein-Associated Serine Proteases , Animals , Humans , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Lectins/metabolism , Macaca fascicularis , Serine Endopeptidases/metabolism
3.
Front Immunol ; 14: 1192767, 2023.
Article in English | MEDLINE | ID: mdl-37325666

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening disorder with a high rate of mortality. Complement activation in ARDS initiates a robust inflammatory reaction that can cause progressive endothelial injury in the lung. Here, we tested whether inhibition of the lectin pathway of complement could reduce the pathology and improve the outcomes in a murine model of LPS-induced lung injury that closely mimics ARDS in human. In vitro, LPS binds to murine and human collectin 11, human MBL and murine MBL-A, but not to C1q, the recognition subcomponent of the classical pathway. This binding initiates deposition of the complement activation products C3b, C4b and C5b-9 on LPS via the lectin pathway. HG-4, a monoclonal antibody that targets MASP-2, a key enzyme in the lectin pathway, inhibited lectin pathway functional activity in vitro, with an IC50 of circa 10nM. Administration of HG4 (5mg/kg) in mice led to almost complete inhibition of the lectin pathway activation for 48hrs, and 50% inhibition at 60hrs post administration. Inhibition of the lectin pathway in mice prior to LPS-induced lung injury improved all pathological markers tested. HG4 reduces the protein concentration in bronchoalveolar lavage fluid (p<0.0001) and levels of myeloid peroxide (p<0.0001), LDH (p<0.0001), TNFα and IL6 (both p<0.0001). Lung injury was significantly reduced (p<0.001) and the survival time of the mice increased (p<0.01). From the previous findings we concluded that inhibition of the lectin pathway has the potential to prevent ARDS pathology.


Subject(s)
Lung Injury , Respiratory Distress Syndrome , Animals , Humans , Mice , Lectins , Lipopolysaccharides/toxicity , Complement Activation , Respiratory Distress Syndrome/chemically induced , Complement C3b/metabolism
4.
Front Immunol ; 12: 714511, 2021.
Article in English | MEDLINE | ID: mdl-34290717

ABSTRACT

Early and persistent activation of complement is considered to play a key role in the pathogenesis of COVID-19. Complement activation products orchestrate a proinflammatory environment that might be critical for the induction and maintenance of a severe inflammatory response to SARS-CoV-2 by recruiting cells of the cellular immune system to the sites of infection and shifting their state of activation towards an inflammatory phenotype. It precedes pathophysiological milestone events like the cytokine storm, progressive endothelial injury triggering microangiopathy, and further complement activation, and causes an acute respiratory distress syndrome (ARDS). To date, the application of antiviral drugs and corticosteroids have shown efficacy in the early stages of SARS-CoV-2 infection, but failed to ameliorate disease severity in patients who progressed to severe COVID-19 pathology. This report demonstrates that lectin pathway (LP) recognition molecules of the complement system, such as MBL, FCN-2 and CL-11, bind to SARS-CoV-2 S- and N-proteins, with subsequent activation of LP-mediated C3b and C4b deposition. In addition, our results confirm and underline that the N-protein of SARS-CoV-2 binds directly to the LP- effector enzyme MASP-2 and activates complement. Inhibition of the LP using an inhibitory monoclonal antibody against MASP-2 effectively blocks LP-mediated complement activation. FACS analyses using transfected HEK-293 cells expressing SARS-CoV-2 S protein confirm a robust LP-dependent C3b deposition on the cell surface which is inhibited by the MASP-2 inhibitory antibody. In light of our present results, and the encouraging performance of our clinical candidate MASP-2 inhibitor Narsoplimab in recently published clinical trials, we suggest that the targeting of MASP-2 provides an unsurpassed window of therapeutic efficacy for the treatment of severe COVID-19.


Subject(s)
COVID-19/blood , Complement Activation/immunology , Complement System Proteins/metabolism , Lectins/blood , Renal Insufficiency, Chronic/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adult , Aged , Aged, 80 and over , Asian People , Biomarkers/blood , COVID-19/complications , COVID-19/pathology , COVID-19/physiopathology , Cohort Studies , Complement System Proteins/immunology , Female , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/virology , Severity of Illness Index , White People
5.
FASEB J ; 31(5): 2210-2219, 2017 05.
Article in English | MEDLINE | ID: mdl-28188176

ABSTRACT

All 3 activation pathways of complement-the classic pathway (CP), the alternative pathway, and the lectin pathway (LP)- converge into a common central event: the cleavage and activation of the abundant third complement component, C3, via formation of C3-activating enzymes (C3 convertases). The fourth complement component, C4, and the second component, C2, are indispensable constituents of the C3 convertase complex, C4bC2a, which is formed by both the CP and the LP. Whereas in the absence of C4, CP can no longer activate C3, LP retains a residual but physiologically critical capacity to convert native C3 into its activation fragments, C3a and C3b. This residual C4 and/or C2 bypass route is dependent on LP-specific mannan-binding lectin-associated serine protease-2. By using various serum sources with defined complement deficiencies, we demonstrate that, under physiologic conditions LP-specific C4 and/or C2 bypass activation of C3 is mediated by direct cleavage of native C3 by mannan-binding lectin-associated serine protease-2 bound to LP-activation complexes captured on ligand-coated surfaces.-Yaseen, S., Demopulos, G., Dudler, T., Yabuki, M., Wood, C. L., Cummings, W. J., Tjoelker, L. W., Fujita, T., Sacks, S., Garred, P., Andrew, P., Sim, R. B., Lachmann, P. J., Wallis, R., Lynch, N., Schwaeble, W. J. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2.


Subject(s)
Complement Activation/physiology , Complement C2/metabolism , Complement C3/metabolism , Complement C4/metabolism , Lectins/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...