Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 13(1): 166, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29855731

ABSTRACT

Polystyrene (PS)-diphenyloxazole (PPO) nanoparticles with attached cross-linked poly-N-isopropylacrylamide (PNIPAM) chains were obtained resulting in PS-PPO-PNIPAM hybrid nanosystems (NS). Fluorescence spectra of chlorin e6 added to PS-PPO-PNIPAM hybrid NS revealed electronic excitation energy transfer (EEET) from PS matrix and encapsulated PPO to chlorin e6. EEET efficiency increased strongly during 1 h after chlorin e6 addition, indicating that uptake of chlorin e6 by PNIPAM part of hybrid NS still proceeds during this time. Heating of PS-PPO-PNIPAM-chlorin e6 NS from 21 to 39 °C results in an enhancement of EEET efficiency; this is consistent with PNIPAM conformation transition that reduces the distance between PS-PPO donors and chlorin e6 acceptors. Meanwhile, a relatively small part of chlorin e6 present in the solution is bound by PNIPAM; thus, further studies in this direction are necessary.

2.
Methods Appl Fluoresc ; 4(4): 044010, 2016 12 07.
Article in English | MEDLINE | ID: mdl-28192303

ABSTRACT

A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.


Subject(s)
Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Absorption, Physicochemical , Humans , Leukemia, Lymphocytic, Chronic, B-Cell , Leukocyte Count , Luminescence , Temperature
3.
J Fluoresc ; 16(6): 783-91, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17031571

ABSTRACT

The series of novel monomer and homodimer styryl dyes based on (p-dimethylaminostyryl) benzothiazolium residues were synthesized and studied as possible fluorescent probes for nucleic acids detection. Spectral-luminescent and spectral-photometric properties of obtained dyes in the unbound state and in DNA presence were studied. Fluorescence emission induced by two-photon excitation of dye-DNA complexes in aqueous buffer solution was registered. Two-photon absorption cross section values of the studied dyes in DNA presence were evaluated.


Subject(s)
Benzothiazoles/chemistry , DNA/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence , Styrenes/chemistry , Animals , Fluorescence , Fluorescent Dyes/chemical synthesis , Photons
4.
J Photochem Photobiol B ; 67(1): 57-63, 2002 May.
Article in English | MEDLINE | ID: mdl-12007468

ABSTRACT

The processes of nonradiative deactivation of electronic excitation energy in cyanine dyes determine their quantum yield. Because of that, the study of the influence of cyanines binding to DNA on these processes can provide information on the causes leading to the cyanines fluorescence intensity enhancement in the presence of DNA. In the presented paper, the activation energies of nonradiative degradation of electronic excitation, quantum yields and rate constants of nonradiative transitions of several cyanines in free state and in the presence of DNA were established and compared. The mechanisms of nonradiative deactivation of dye excitation energy were discussed.


Subject(s)
Carbocyanines/chemistry , Coloring Agents/chemistry , DNA/chemistry , Electrons , Energy Transfer , Molecular Structure , Spectrometry, Fluorescence , Spectrophotometry, Atomic
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(7): 1525-32, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11446704

ABSTRACT

Absorption, fluorescence emission and excitation spectra of benzothiazole cyanine dyes--thiazole orange (TO) and 7-methyl-6-(3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidenmethyl) [1,3] dioxolo [4',5':4,5] benzo [d] [1,3] thiazolium methylmethosulfate (Cyan 13)--were investigated over a wide concentration range. The dyes form aggregates with a 'sandwich'-like structure in water solution. At low dye to DNA concentrations ratios, Cyan 13 and TO monomers appear to interact with the DNA. On increasing the dye to DNA concentrations ratio, free dye molecules aggregate with the DNA-bound ones. The spectra of the free dye aggregates and the aggregates formed on the DNA, are characterized by an anomalously large (more than 100 nm) Stokes shift. This suggests, that the pi-electron systems of the aggregates undergo substantial changes in excited state, compared to those of the monomers. The formation of aggregates consisting of the free and DNA-bound dye molecules can be explained using the half-intercalation model of the interaction of the cyanine dye monomers with the DNA.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Thiazoles/chemistry , Absorption , Benzothiazoles , Quinolines , Spectrometry, Fluorescence
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(13): 2705-15, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11765797

ABSTRACT

Spectral properties of carbocyanine dye 3-methyl-2-[3-methyl-2-(3-methyl-2,3-dihydro-1,3-benzothiazole-2-iliden)-1- butenyl]-1,3-benzothiazole-3-il iodide (Cyan betaiPr) in water solution, as well as in the presence of different types of double stranded DNA have been studied. While in water solution of 'free' dye Cyan betaiPr stays mainly in monomeric form, in the presence of DNA the dye molecules form J-aggregates. The molecular structure of these J-aggregates causes the Davydov splitting of their absorption band, corresponding to the first electronic transition. A study of site-specificity showed that in the presence of poly (dA/dT) the majority of Cyan betaiPr molecules form J-aggregates, while in the presence of poly (dGC/dGC) dye molecules stay mainly in monomeric form and in presence of chicken erythrocytes DNA both J-aggregate and monomeric forms of dye are present. We suppose that Cyan betaiPr molecules aggregate in DNA groove, which serves as a template for J-aggregate forming. An increase of ionic strength of solution leads to the release of dye molecules from DNA grooves and prevents J-aggregates formation.


Subject(s)
Carbocyanines/chemistry , DNA/chemistry , Fluorescent Dyes/chemistry , Absorption , Fluorescence , Molecular Structure , Sodium Chloride/chemistry , Solutions , Spectrometry, Fluorescence/methods
7.
Article in English | MEDLINE | ID: mdl-10794454

ABSTRACT

Spectral properties of newly synthesized cyanine dyes, namely 1-[6-(4-[6-[2,6-dimethyl-4-(3-methyl-2,3-dihydro-1,3-benzothiazol- 2-ylidenmethyl)-1-pyridiniumyl]hexanoyl]piperazino)-6- oxohexyl]-2,6-dimethyl-4-(3-ethyl-2,3-dihydro-1,3-benzothiazol+ ++-2-ylidenmethyl)pyridinium (K-6) (bichromophoric dye) and 1-[5-di(3-[5-[2,6-dimethyl-4-(3-methyl-2,3-dihydro-1,3-benzothiazol++ +-2-ylidenmethyl)-1-pyridiniumyl]pentylcarboxamido]pro pyl) carbamoylpentyl]-2,6-dimethyl-4-(3-methyl-2,3-dihydro-1,3-benzo thiazol-2-ylidenmethyl) pyridinium (K-T) (trichromophoric dye) in solutions in the presence of and without deoxyribonucleic acid (DNA) were studied within a wide concentration range. It has been established that absorption, as well as fluorescence of investigated dye solutions, without DNA are mainly determined by H-aggregates of dye molecules. On the contrary, the fluorescence of dye solutions in the presence of DNA gives an intrinsic dye molecular fluorescence. H-aggregates are broken because of binding dye molecules with DNA. It has been suggested that both K-T and K-6 molecules bind mainly with DNA via the interaction of two chromophores. As the ratio of the number of dye molecules to that of DNA base pairs increases with an increase in dye concentration, a formation of dye molecule H-aggregates on DNA molecules are observed. Such aggregates have a different structure than those formed in the solutions without DNA. On the grounds of the data obtained, it is concluded that it is possible to use a dye aggregation capable of obtaining higher values for fluorescence enhancement of the DNA stains.


Subject(s)
DNA/analysis , Fluorescent Dyes/chemistry , Piperazines/chemistry , Pyridines/chemistry , Thiazoles/chemistry , Benzothiazoles , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...