Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 31(Pt 4): 670-680, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38838166

ABSTRACT

Deflectometric profilometers are used to precisely measure the form of beam shaping optics of synchrotrons and X-ray free-electron lasers. They often utilize autocollimators which measure slope by evaluating the displacement of a reticle image on a detector. Based on our privileged access to the raw image data of an autocollimator, novel strategies to reduce the systematic measurement errors by using a set of overlapping images of the reticle obtained at different positions on the detector are discussed. It is demonstrated that imaging properties such as, for example, geometrical distortions and vignetting, can be extracted from this redundant set of images without recourse to external calibration facilities. This approach is based on the fact that the properties of the reticle itself do not change - all changes in the reticle image are due to the imaging process. Firstly, by combining interpolation and correlation, it is possible to determine the shift of a reticle image relative to a reference image with minimal error propagation. Secondly, the intensity of the reticle image is analysed as a function of its position on the CCD and a vignetting correction is calculated. Thirdly, the size of the reticle image is analysed as a function of its position and an imaging distortion correction is derived. It is demonstrated that, for different measurement ranges and aperture diameters of the autocollimator, reductions in the systematic errors of up to a factor of four to five can be achieved without recourse to external measurements.

2.
Materials (Basel) ; 14(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34640007

ABSTRACT

The spectral properties of new boron-containing dyes were studied. One-component (pure dyes) and composite "Alq3+dye" thin films were fabricated using the thermal vacuum deposition method. The positions of the transmission spectra maxima in a one-component film are different for different film thicknesses. The best correlation of the maxima positions of the dye transmission spectra in solid and liquid solutions was observed for thicknesses of films close to a few (up to 10) monolayers. On the other hand, the absorption spectra maxima positions of one-component dye films (upper 10 nm) and composite films with high concentration, did not match the corresponding positions of absorption spectra maxima recorded in solutions. Comparison of the absorption spectra in one-component dye films and in solutions indicates the presence of both monomers and their aggregates in one-component films (contrary to solutions where such processes of aggregation do not take place, even at very high concentrations). Simultaneously with aggregation manifestation in the absorption spectra, the intensity of fluorescence of one-component dye films dramatically decreases. A quantum chemical simulation of the possible relative arrangement of two dye molecules indicates that the most possible of the simplest types of aggregates are physical dimers. Films of practical importance (due to efficient energy transfer from host to guest molecules when all singlet excitons are captured) possess a high quantum yield of fluorescence when reaching an impurity concentration of a few percent (aggregation does not take place yet).

3.
J Synchrotron Radiat ; 28(Pt 4): 1031-1040, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34212866

ABSTRACT

A new type of optical element that can focus a cylindrical wave to a point focus (or vice versa) is analytically described. Such waves are, for example, produced in a beamline where light is collimated in one direction and then doubly focused by a single optic. A classical example in X-ray optics is the collimated two-crystal monochromator, with toroidal mirror refocusing. The element here replaces the toroid, and in such a system provides completely aberration free, point-to-point imaging of rays from the on-axis source point. We present an analytic solution for the mirror shape in its laboratory coordinate system with zero slope at the centre, and approximate solutions, based on bending an oblique circular cone and a bent right circular cylinder, that may facilitate fabrication and metrology.

4.
J Synchrotron Radiat ; 28(Pt 4): 1041-1049, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34212867

ABSTRACT

The diaboloid is a reflecting surface that converts a spherical wave to a cylindrical wave. This complex surface may find application in new Advanced Light Source bending-magnet beamlines or in other beamlines that now use toroidal optics for astigmatic focusing. Here, the numerical implementation of diaboloid mirrors is described, and the benefit of this mirror in beamlines exploiting diffraction-limited storage rings is studied by ray tracing. The use of diaboloids becomes especially interesting for the new low-emittance storage rings because the reduction of aberration becomes essential for such small sources. The validity of the toroidal and other mirror surfaces approximating the diaboloid, and the effect of the mirror magnification, are discussed.

5.
Sci Adv ; 6(51)2020 Dec.
Article in English | MEDLINE | ID: mdl-33328228

ABSTRACT

The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.

6.
Rev Sci Instrum ; 91(7): 075113, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752867

ABSTRACT

We present experimental, analytical, and numerical methods developed for reconstruction (deconvolution) of one-dimensional (1D) surface slope profiles over the spatial frequency range where the raw data are significantly perturbed due to the limited resolution of the measurement instrument. We characterize the spatial resolution properties of a profiler with the instrument's transfer function (ITF). To precisely measure the ITF, we apply a recently developed method utilizing test surfaces with 1D linear chirped height profiles of constant slope amplitude. Based on the results of the ITF calibration, we determine parameters of an analytical model for the ITF that is used in the original reconstruction software. Here, we treat surface slope metrology data obtained with the Optical Surface Measuring System (OSMS), using as a sensor an electronic autocollimator (AC) ELCOMAT-3000. The spatial resolution of the OSMS is limited by the size of the AC light-beam-collimating aperture. For the purposes of this investigation, the OSMS is equipped with a circular aperture with a diameter of 2.5 mm. This is a typical arrangement of most AC-based slope profilers developed for surface slope metrology of state-of-the-art x-ray mirrors. Using the example of surface slope metrology of two state-of-the-art elliptically shaped x-ray focusing mirrors, we demonstrate that the developed data reconstruction procedure allows us to significantly improve the accuracy of surface slope metrology with the OSMS over the spatial wavelength range from ∼1.6 mm to 7 mm. Thus, the amplitude of the quasi-periodic error characteristic of the deterministic polishing process used appears to be higher by a factor of ∼2 than is apparent from the rough metrology data. Underestimation of the surface slope errors in this spatial wavelength range can lead to serious errors in the expected performance of x-ray mirrors in synchrotron beamlines, especially at modern light sources utilizing coherent x rays, where the perturbations can lead to increased speckle-like intensity variation.

7.
Pharmaceutics ; 11(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717305

ABSTRACT

A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle-C60 fullerene (C60)-for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells.

8.
Rev Sci Instrum ; 90(2): 021717, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831748

ABSTRACT

Deflectometric profilometers based on industrial electronic autocollimators (ACs), as the ELCOMAT-3000, have become indispensable tools for precision form measurements of optical surfaces. A growing number of labs at synchrotron and free electron laser x-ray facilities are going for BESSY-II NOM-like versions of the AC-based profilometers. These tools have proven capable of characterizing state-of-the-art aspherical x-ray optics with an accuracy on the level of 100 nrad (root-mean-square) over the spatial frequency range limited by the size of the aperture used in the profilometer. Typically, a round aperture with a diameter of about 2.5 mm is used. Previous investigations have shown that with the optimally aligned 2.5-mm aperture, the spatial resolution of a NOM-like profilometer corresponding to the first zero-crossing of the optical transform function (OTF) is ∼1.2 mm. In this paper, we investigate the performance of an AC ELCOMAT-3000 for a slope profilometer with different aperture sizes and shapes. The results of angular calibration of the AC equipped with circular and rectangular apertures placed at different distances from the AC are discussed. The calibration was performed at the Physikalisch-Technische Bundesanstalt using the original experimental arrangements, also discussed in the paper. The OTF measurements with the specially developed test sample with chirped surface slope profiles were performed at the Advanced Light Source X-Ray Optics Laboratory (XROL) in application to a new optical surface measuring system under development at the XROL. In the OTF measurements, we have shown that application of a rectangular aperture with dimensions of 1.5 mm × 3 mm improves the spatial resolution in the tangential direction by a factor of ∼1.4 compared to that of the standard circular aperture of 2.5-mm diameter. We believe that the results of our investigations are crucial for reaching fundamental metrological limits in deflectometric profilometry utilizing state-of-the-art electronic autocollimators.

9.
Rev Sci Instrum ; 90(2): 021705, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831764

ABSTRACT

Deflectometric profilometers are indispensable tools for the precision form measurement of beam-shaping optics of synchrotrons and x-ray free electron lasers. They are used in metrology labs for x-ray optics worldwide and are crucial for providing measurement accuracy dictated by the form tolerances for modern state-of-the-art x-ray optics. Deflectometric profilometers use surface slope (angle) to assess form, and they utilize commercial autocollimators for the contactless slope measurement. In this contribution, we discuss the influences of environmental parameters, such as temperature and air pressure, including their gradients, on high-accuracy metrology with autocollimators in profilometers. They can cause substantial systematic errors in form measurement, especially in the case of large and strongly curved optical surfaces of high dynamic range. Relative angle and form measuring errors of the order of 10-4 are to be expected. We characterize environmental influences by extended theoretical and experimental investigations and derive strategies for correcting them. We also discuss the possibility to minimize the contributions of some errors by the application of sophisticated experimental arrangements and methods. This work aims at approaching fundamental limits in autocollimator-based slope and form metrology.

10.
Rev Sci Instrum ; 90(2): 021711, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831770

ABSTRACT

Super high quality aspherical x-ray mirrors with a residual slope error of ∼100 nrad (root-mean-square) and a height error of ∼1-2 nm (peak-to-valley), and even lower, are now available from a number of the most advanced vendors utilizing deterministic polishing techniques. The mirror specification for the fabrication is based on the simulations of the desired performance of the mirror in the beamline optical system and is normally given with the acceptable level of deviation of the mirror figure and finish from the desired ideal shape. For example, in the case of aspherical x-ray mirrors designed for the Advanced Light Source (ALS) QERLIN beamline, the ideal shape is defined with the beamline application (conjugate) parameters and their tolerances. In this paper, we first discuss an original procedure and dedicated software developed at the ALS X-Ray Optics Laboratory (XROL) for optimization of beamline performance of pre-shaped hyperbolic and elliptical mirrors. The optimization is based on results of ex situ surface slope metrology and consists in minimization of the mirror shape error by determining the conjugate parameters of the best-fit ideal shape within the specified tolerances. We describe novel optical metrology instrumentation, measuring techniques, and analytical methods used at the XROL for acquisition of surface slope data and optimization of the optic's beamline performance. The high efficacy of the developed experimental methods and data analysis procedures is demonstrated in results of measurements with and performance optimization of hyperbolic and elliptical cylinder mirrors designed and fabricated for the ALS QERLIN beamline.

11.
Nanoscale Res Lett ; 12(1): 294, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28445996

ABSTRACT

Formation and electronic excitation energy transfer process in the nanosystem consisting of Ce0.85Tb0.15F3 nanoparticles, cetrimonium bromide (CTAB) surfactant, and chlorin e6 photosensitizer were studied. It was shown that chlorin e6 molecules bind to Ce0.85Tb0.15F3 NP in the presence of CTAB forming thus Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem. We consider that binding occurs via chlorin e6 embedding in the shell of CTAB molecules, formed around NP. In the Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem, electronic excitation energy transfer from Ce3+ to chlorin e6 takes place both directly (with the 0.33 efficiency for 2 µM chlorin e6) and via Tb3+.

12.
Rev Sci Instrum ; 88(1): 013110, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28147697

ABSTRACT

Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer's optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small source (∼1µm) and detector pixels (∼5µm) with high line density gratings (∼3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi1/3Co1/3Mn1/3O2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. We propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.

13.
Methods Appl Fluoresc ; 5(1): 014001, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28099165

ABSTRACT

This paper summarizes the results of studies of the spectral properties-optical absorption, fluorescence and phosphorescence-of DNA and RNA macromolecules and synthetic poly-, oligo- and mono-nucleotides, which have been carried out in our laboratory. The system of first excited singlet and triplet energy levels for DNA and RNA is evaluated using low-temperature (4.2 K-77 K) luminescent measurements. The traps of the singlet and triplet electronic excitations in these compounds are identified. An important self-protection mechanism against photo-damage of DNA and RNA by UV photons or penetrative radiation based on the capture of triplet electronic-energy excitations by the most photostable centers-in DNA, the complex formed by neighboring adenosine (A) and thymidine (T) links; in RNA, the adenosine links-is described. It is confirmed that despite similarities in the chemical and partly energy structures DNA is more stable than RNA. The spectral manifestation of the telomeres (the important functional system) in DNA macromolecules is examined. The results obtained on telomere fragments provide the possibility of finding the configuration peculiarities of the triplet excitations traps in DNA macromolecules. The resulting spreading length of the migrating singlet (l s) and triplet (l t) excitations for DNA and RNA macromolecules are evaluated.


Subject(s)
DNA , RNA , Fluorescence , Luminescent Measurements , Temperature
14.
J Am Chem Soc ; 139(6): 2520-2528, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28112929

ABSTRACT

DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Cytosine/metabolism , DNA/metabolism , Thermodynamics , CCAAT-Enhancer-Binding Proteins/chemistry , Cytosine/chemistry , DNA/chemistry , DNA Methylation , DNA Replication , Fluorescence , Humans , Kinetics , Molecular Structure , Ubiquitin-Protein Ligases
15.
Rev Sci Instrum ; 87(5): 051701, 2016 05.
Article in English | MEDLINE | ID: mdl-27250367

ABSTRACT

Recent developments in synchrotron storage rings and free-electron laser-based x-ray sources with ever-increasing brightness and coherent flux have pushed x-ray optics requirements to new frontiers. This Special Topic gathers a set of articles derived from a subset of the key presentations of the International Workshop on X-ray Mirrors Fabrication (IWXM-2015) and Metrology held at Lawrence Berkley National Laboratory, Berkeley, California, USA, July 14-16, 2015. The workshop objective was to report on recent progress in x-ray synchrotron radiation mirrors fabrication as well as on new developments in related metrology tools and methods.

16.
Rev Sci Instrum ; 87(5): 051805, 2016 05.
Article in English | MEDLINE | ID: mdl-27250372

ABSTRACT

For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.

17.
Rev Sci Instrum ; 87(5): 051904, 2016 05.
Article in English | MEDLINE | ID: mdl-27250376

ABSTRACT

The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V. Yashchuk et al., Proc. SPIE 6704, 67040A (2007)]. Potentially, the UTM method provides high performance calibration and accounts for peculiarities of the optics under test (e.g., slope distribution) and the experimental arrangement (e.g., the distance between the sensor and the optic under test). At the same time, the UTM calibration method is inherently universal, applicable to a variety of optics and experimental arrangements. In this work, we present the results of tests with a key component of the UTM system, a custom high precision tilt stage, which has been recently developed in collaboration with Physik Instrumente, GmbH. The tests have demonstrated high performance of the stage and its capability (after additional calibration) to provide angular calibration of surface slope measuring profilers over the entire instrumental dynamic range with absolute accuracy better than 30 nrad. The details of the stage design and tests are presented. We also discuss the foundation of the UTM method and calibration algorithm, as well as the possible design of a full scale UTM system.

18.
J Synchrotron Radiat ; 23(Pt 3): 665-78, 2016 05.
Article in English | MEDLINE | ID: mdl-27140145

ABSTRACT

An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. Some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

19.
J Synchrotron Radiat ; 22(3): 666-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25931083

ABSTRACT

The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4-17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described.

20.
Opt Express ; 23(4): 4771-90, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836513

ABSTRACT

A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10(4) achieved routinely today to well above 10(5). This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...