Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Gen Med ; 17: 37-48, 2024.
Article in English | MEDLINE | ID: mdl-38204493

ABSTRACT

Purpose: Genetic mutations are major factors in the diagnosis and prognosis of leukemia, and it is difficult to assess these variants using single-gene analysis. Therefore, this study aimed to develop a fast and cost-effective method for genetic screening of myeloid malignancies using a customized next-generation sequencing (NGS) panel. Patients and Methods: A customized myeloid panel was designed and investigated in 15 acute myeloid leukemia patients. The panel included 11 genes that were most commonly mutated in myeloid malignancies. This panel was designed to sequence the complete genome of CALR, IDH1, IDH2, JAK2, FLT3, NPM1, MPL, TET2, SF3B1, TP53, and MLL. Results: Among the 15 patients, 14 actual pathogenic variants were identified in nine samples, and negative results were found in six samples. Positive findings were observed for JAK2, FLT3, SF3B1, and TET2. Interestingly, non-classical FLT3 mutations (c.1715A>C, c.2513delG, and c.2507dupT) were detected in patients who were negative for FLT3-ITD and TKD by routine molecular results. All identified variants were pathogenic, and the high coverage of the assay allowed us to predict variants at a low frequency (1%) with 1000x coverage. Conclusion: Utilizing a custom panel allowed us to identify variants that were not detected by routine tests or those that were not routinely investigated. Using the costuming panel will enable us to sequence all genes and discover new potential pathogenic variants that are not possible with other commercially available panels that focus only on hotspot regions. This study's strength in utilizing NGS and implanting a customized panel to identify new pathogenic variants that might be common in our population and important in routine diagnosis for providing optimal healthcare for personalized medicine.

2.
Diagnostics (Basel) ; 12(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328276

ABSTRACT

BACKGROUND: Tumor protein 53 (TP53) is a tumor-suppressor gene and plays an essential role in apoptosis, cell cycle arrest, genomic stability, and DNA repair. Although it is the most often mutated gene in human cancer, it has respectively low frequency in hematological malignancy but is significantly linked with complex karyotype, poor prognosis, and chemotherapeutic response. Nevertheless, the prevalence and prognostic role of TP53 mutations in hematological malignancy in Saudi patients are not well reported. We, therefore, aim to assess the frequency of TP53 mutations in hematological malignancies in Saudi Arabia. METHOD: 20 different hematological malignancy samples were tested using fluorescence in situ hybridization (FISH) technique for TP53 deletion detection and next-generation sequencing (NGS) targeted panel was applied on 10 samples for mutations identification specifically TP53 mutation. RESULTS: TP53 deletion was detected in 6 of 20 samples by FISH. Most of the 6 patients with TP53 deletion had acute lymphoblastic leukemia (ALL), and majority of them were child. NGS result revealed one heterozygous missense mutation in exon 5 of the TP53 gene (c. G9963A, p.H175R). CONCLUSION: To the best of our knowledge, the TP53 mutation is novel variant, and the first time we are reporting their association with myelodysplastic syndromic individual with complex karyotype. This study recommends further analysis of genomic mutations on bigger cohorts, utilizing high throughput technologies.

3.
Genes (Basel) ; 12(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34946913

ABSTRACT

Different forms of human cancer show mutations for isocitrate dehydrogenases 1 and 2 (IDH1/2). Mutation of these genes can cause aberrant methylation of the genome CpG islands (CGIs), which leads to an increase of suppressed oncogenes transcription or repression of active tumor suppressor gene transcription. This study aimed to identify the prevalence of IDH1/2 mutations in acute leukemia patients. The study cohort included 43 AML patients and 30 childhood ALL patients, from whom DNA bone marrow samples were taken. The alteration hotspots in codons IDH1 (R132) and IDH2 (R172 and R140) were examined via direct sequencing. Mutations in IDH1 were detected in 7 out of 43 (16.2%) AML patients; 5 of them occurred at codon R132. The other two mutations included a single-nucleotide polymorphism, which affected codon G105 in one patient. However, no mutation was detected in the IDH2 in any of the patients. Moreover, no mutations were detected in either IDH1 or IDH2 in ALL patients. The dominance of IDH1 mutations in AML, which was 16%, emphasizes the existence of the mutation in our population. On the other hand, IDH2 mutation was observed to be less frequent in both illnesses. Due to the limitation of using a small sample size, larger cohort screening is recommended to determine their usefulness as prognostic indicators.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Female , Humans , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Prognosis , Saudi Arabia/epidemiology , Young Adult
4.
Saudi J Biol Sci ; 28(6): 3433-3437, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33746537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a disease called COVID-19. COVID-19 is primarily diagnosed using molecular techniques mainly real-time reverse transcriptase PCR. Reliable and accurate serologic assays for COVID-19, are an important tool for surveillance and epidemiologic studies. In this study, the IgG/IgM Rapid Test Cassette and the Prima COVID-19 IgG/IgM Rapid Test for the detection of SARS-CoV-2 antibodies in blood, serum and plasma samples collected from patients up to 48 days after symptom onset in Saudi Arabia were validated. Overall, both tests showed poor performance and cannot be utilised for COVID-19 diagnosis as a point of care test or to determine seroprevalence.

SELECTION OF CITATIONS
SEARCH DETAIL
...