Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7259, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142653

ABSTRACT

Screen printing of cotton fabric using newly synthesized azo reactive dyes was carried out in the present study. Functional group chemistry and its effect on the printing properties of cotton fabric by varying the nature, number and position of reactive groups of synthesized azo reactive dyes (D1-D6) was studied. Different printing parameters (Temperature, alkali and urea) and their effect was explored on the physicochemical printing properties e.g., fixation, color yield, and penetration of the dyed cotton fabric. Data revealed that dyes with more reactive groups and having linear and planar structures (D-6) showed enhanced printing properties. Spectraflash spectrophotometer was used to evaluate the colorimetric properties of screen-printed cotton fabric and results showed superb color buildup. Printed cotton samples displayed excellent to very good ultraviolet protection factor (UPF). Presence of sulphonate groups and excellent fastness properties may entitle these reactive dyes as commercially viable for urea free printing of cotton fabric.

2.
Sci Total Environ ; 779: 146345, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-33752007

ABSTRACT

Co-existence of polychlorinated biphenyls (PCBs) and hexavalent chromium (Cr(VI)) in the environment due to effluent from industries has aggravated the pollution problem. Both contaminants can alter chemical interactions, processes and impair enzymatic activities in the ecosystem that results in negative impacts on aquatic and terrestrial life. Previously, research has been performed for the fate and transfer of these contaminants individually, but simultaneous removal approaches have not received much attention. Cr(VI) exists in a highly toxic form in the environment once released, whereas location of chlorine atoms in the ring determines PCBs toxicity. Lower chlorinated compounds are easily degradable whereas as high chlorinated compounds require sequential strategy for transformation. Microorganisms can develop different mechanism to detoxify both pollutants. However, occurrence of multiple contaminants in single system can alter the bioremediation efficiency of bacteria. Use of metal resistance bacterial for the degradation of organic compounds has been widely used bioaugmentation strategy. Along with that use of sorbents/bio sorbents, biosurfactants and phytoremediation approaches have already been well reported. Bioremediation strategy with dual potential to detoxify the Cr(VI) and PCBs would be a probable option for simultaneous biotreatment. Application of bioreactors and biofilms covered organic particles can be utilized as efficient bioaugmentation approach. In this review, biotreatment systems and bacterial oxidative and reductive enzymes/processes are explained and possible biotransformation pathway has been purposed for bioremediation of co-contaminated waters.


Subject(s)
Polychlorinated Biphenyls , Wastewater , Biodegradation, Environmental , Chromium/analysis , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...