Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0258431, 2021.
Article in English | MEDLINE | ID: mdl-34762679

ABSTRACT

BACKGROUND: Pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae) is a native pest of Asia and preferably invasion on cotton (Gossypium hirsutum L.) crop as a commendatory host plant. Commercially, G. hirsutum is known as white gold and is an important cash crop all over the globe. Limited studies were published to focus on certain dietary compositions against different cotton pests. Therefore, the present study was undertaken in the laboratory under controlled conditions (temperature: 27 ± 2°C and relative humidity: 60 ± 10%) to determine the impact of three different treatment diets (wheat germ meal, okra, and chickpea) on the biological aspects (lifetime, developmental period) of P. gossypiella. RESULTS: Results revealed that the shortest larval time of P. gossypiella was observed on the okra feed diet while the longest period was recorded on the wheat germ diet. Meanwhile, the pupation delay was noted on the wheat germ diet. The dietary influence was also observed on adult stages of female and male P. gossypiella (43.00 and 37.50 days respectively) and compared with a standard diet (56.50 and 52.50 days respectively). Furthermore, larval weighed more on the okra and chickpea diet followed by the wheat germ diet, whereas highest pupal weight was observed on the standard diet followed by the chickpea diet and okra diet. CONCLUSION: Developmental parameters were significantly variant across all treatment diets, whereas the higher significant difference was reported on the okra diet. Therefore, the existing data of this study offers fruitful interventions for the future as a modified diet for large-scale and rapid mass production of P. gossypiella larvae.


Subject(s)
Diet , Laboratories , Moths/physiology , Animals , Body Weight , Larva/physiology , Pupa/physiology , Specimen Handling
2.
Biomed Res Int ; 2021: 6661191, 2021.
Article in English | MEDLINE | ID: mdl-34095308

ABSTRACT

The recent COVID-19 pandemic has impacted nearly the whole world due to its high morbidity and mortality rate. Thus, scientists around the globe are working to find potent drugs and designing an effective vaccine against COVID-19. Phytochemicals from medicinal plants are known to have a long history for the treatment of various pathogens and infections; thus, keeping this in mind, this study was performed to explore the potential of different phytochemicals as candidate inhibitors of the HR1 domain in SARS-CoV-2 spike protein by using computer-aided drug discovery methods. Initially, the pharmacological assessment was performed to study the drug-likeness properties of the phytochemicals for their safe human administration. Suitable compounds were subjected to molecular docking to screen strongly binding phytochemicals with HR1 while the stability of ligand binding was analyzed using molecular dynamics simulations. Quantum computation-based density functional theory (DFT) analysis was constituted to analyze the reactivity of these compounds with the receptor. Through analysis, 108 phytochemicals passed the pharmacological assessment and upon docking of these 108 phytochemicals, 36 were screened passing a threshold of -8.5 kcal/mol. After analyzing stability and reactivity, 5 phytochemicals, i.e., SilybinC, Isopomiferin, Lycopene, SilydianinB, and Silydianin are identified as novel and potent candidates for the inhibition of HR1 domain in SARS-CoV-2 spike protein. Based on these results, it is concluded that these compounds can play an important role in the design and development of a drug against COVID-19, after an exhaustive in vitro and in vivo examination of these compounds, in future.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Phytochemicals/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/chemistry , Binding Sites , COVID-19/virology , Density Functional Theory , Drug Discovery , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/chemistry , Protein Domains , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
3.
Chem Phys Lett ; 771: 138463, 2021 May 16.
Article in English | MEDLINE | ID: mdl-33716307

ABSTRACT

Humans around the globe have been severely affected by SARS-CoV-2 and no treatment has yet been authorized for the treatment of this severe condition brought by COVID-19. Here, an in silico research was executed to elucidate the inhibitory potential of selected thiazolides derivatives against SARS-CoV-2 Protease (Mpro) and Methyltransferase (MTase). Based on the analysis; 4 compounds were discovered to have efficacious and remarkable results against the proteins of the interest. Primarily, results obtained through this study not only allude these compounds as potential inhibitors but also pave the way for in vivo and in vitro validation of these compounds.

4.
Biomed Res Int ; 2020: 6237160, 2020.
Article in English | MEDLINE | ID: mdl-33102585

ABSTRACT

Coronaviruses have been reported previously due to their association with the severe acute respiratory syndrome (SARS). After SARS, these viruses were known to be causing Middle East respiratory syndrome (MERS) and caused 35% evanescence amid victims pursuing remedial care. Nowadays, beta coronaviruses, members of Coronaviridae, family order Nidovirales, have become subjects of great importance due to their latest pandemic originating from Wuhan, China. The virus named as human-SARS-like coronavirus-2 contains four structural as well as sixteen nonstructural proteins encoded by single-stranded ribonucleic acid of positive polarity. As there is no vaccine available to treat the infection caused by these viruses, there is a dire need for taking necessary steps against this virus. Herein, we have targeted two nonstructural proteins of SARS-CoV-2, namely, methyltransferase (nsp16) and helicase (nsp13), respectively, due to their substantial activity in viral pathogenesis. A total of 2035 compounds were analyzed for their pharmacokinetics and pharmacological properties. The screened 108 compounds were docked against both targeted proteins and were compared with previously reported known compounds. Compounds with high binding affinity were analyzed for their reactivity through DFT analysis, and binding was analyzed using molecular dynamics simulations. Through the analyses performed in this study, it is concluded that EryvarinM, Silydianin, Osajin, and Raddeanine can be considered potential inhibitors for MTase, while TomentodiplaconeB, Osajin, Sesquiterpene Glycoside, Rhamnetin, and Silydianin for helicase after these compounds are validated thoroughly using in vitro and in vivo protocols.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Phytochemicals/chemistry , Phytochemicals/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Antimetabolites/chemistry , Antimetabolites/pharmacology , Antiviral Agents/chemistry , COVID-19/epidemiology , COVID-19/virology , China/epidemiology , Dioxolanes/chemistry , Dioxolanes/pharmacology , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Humans , Methyltransferases/drug effects , Molecular Docking Simulation , Nelfinavir/chemistry , Nelfinavir/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Protein Conformation , RNA Helicases/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
5.
J Vet Res ; 62(1): 17-26, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29978123

ABSTRACT

INTRODUCTION: Dengue is one of the major emerging viral diseases in the world, with dramatic increases in reported cases in the last few decades and annual worldwide occurrence of approximately 390 million infections. It is a highly important mosquito-vectored disease and is a problem in tropical and subtropical areas of the world. The major aim of this study was to clone and express the dengue NS3 gene, in service to its therapeutic importance for the development of stable cell lines. MATERIAL AND METHODS: Blood samples from dengue fever (DF) patients were collected and subjected to PCR amplification of the NS3 gene of dengue virus serotype-2 (DENV-2). The NS3 gene was amplified using gene specific primers and cloned in the TA cloning vectors. RESULTS: The gene was successfully expressed in mammalian expression vector pcDNA3.1. The current finding was different from a previously reported DENV-2 strain replicon constructed in different cells, in which the whole genetic material of the virus was used instead of an active protease gene, and which gave a low yield of replicon expressing cells. CONCLUSION: Recombinant NS3 could be used to produce an antibody that is possibly helpful for developing a single step diagnostic assay to detect the dengue virus NS3 antigen in sera of dengue patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...