Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Molecules ; 29(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38202843

ABSTRACT

Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V-1 s-1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics.

2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256172

ABSTRACT

In this research, two polymers of P1 and P2 based on monomers consisting of thiophene, 3,4-Ethylenedioxythiophene (EDOT) and diketopyrrolopyrrole (DPP) are designed and obtained via Stille coupling polycondensation. The material shows excellent coplanarity and structural regularity due to the fine planarity of DPP itself and the weak non-covalent bonding interactions existing between the three units. Two different lengths of non-conjugated side chains are introduced and this has an effect on the intermolecular chain stacking, causing the film absorption to display different characteristic properties. On the other hand, the difference in the side chains does not have a significant effect on the thermal stability and the energy levels of the frontier orbitals of the materials, which is related to the fact that the materials both feature extremely high conjugation lengths and specific molecular compositions. Microscopic investigations targeting the side chains provide a contribution to the further design of organic semiconductor materials that meet device requirements. Tests based on organic transistors show a slight difference in conductivity between the two polymers, with P2 having better hole mobility than P1. This study highlights the importance of the impact of side chains on device performance, especially in the field of organic electronics.


Subject(s)
Electronics , Ketones , Polymers , Pyrroles , Thiophenes , Electric Conductivity
3.
Materials (Basel) ; 16(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834547

ABSTRACT

Many optoelectronic applications require organic semiconductor (OSC) materials with high electron affinity. In this work, a series of novel acceptor-donor-acceptor (A-D-A) materials with low-lying LUMO energy levels were designed and characterized. In this strategy, two acceptor dyes, bis-isatin and di-2-(2-oxindolin-3-ylidene) malononitrile, were connected by various π-bridges (benzene ring, benzo[c][1,2,5]thiadiazole, monothiophene, trithiophene). We varied the length of the π-conjugation of the central core and the linkage position of the acceptor core (4- vs. 6-position of the phenyl ring) to investigate the effect on the optical and electrochemical properties of the materials. We performed density functional theory (DFT) and time-dependent DFT (TD-DFT) studies to gain insight into the dyes' electronic properties by determining the energy levels. Our findings demonstrate that with increasing acceptor strength and π-conjugation length of the core, the wavelength of the longest absorption maximum as well as their respective extinction coefficients are enhanced, which results in band-gap reduction either by lowering the LUMO and/or raising the HOMO energy level of the molecules. The potential practical utility of these materials as electron-transport materials for perovskite solar cells (PSCs) has been demonstrated.

4.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764530

ABSTRACT

2D materials possess great potential to serve as gas-sensing materials due to their large, specific surface areas and strong surface activities. Among this family, transition metal chalcogenide materials exhibit different properties and are promising candidates for a wide range of applications, including sensors, photodetectors, energy conversion, and energy storage. Herein, a high-shear mixing method has been used to produce multilayered MoS2 nanosheet dispersions. MoS2 thin films were manufactured by vacuum-assisted filtration. The structural morphology of MoS2 was studied using ς-potential, UV-visible, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy (RS). The spectroscopic and microscopic analyses confirm the formation of a high-crystalline MoS2 thin film with good inter-sheet connectivity and relative thickness uniformity. The thickness of the MoS2 layer is measured to be approximately 250 nm, with a nanosheet size of 120 nm ± 40 nm and a number of layers between 6 and 9 layers. Moreover, the electrical characteristics clearly showed that the MoS2 thin film exhibits good conductivity and a linear I-V curve response, indicating good ohmic contact between the MoS2 film and the electrodes. As an example of applicability, we fabricated chemiresistive sensor devices with a MoS2 film as a sensing layer. The performance of the MoS2-chemiresistive sensor for NO2 was assessed by being exposed to different concentrations of NO2 (1 ppm to 10 ppm). This sensor shows a sensibility to low concentrations of 1 ppm, with a response time of 114 s and a recovery time of 420 s. The effect of thin-film thickness and operating temperatures on sensor response was studied. The results show that thinner film exhibits a higher response to NO2; the response decreases as the working temperature increases.

5.
Microorganisms ; 11(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37630566

ABSTRACT

In the past decade, π-conjugated polymer nanoparticles (CPNs) have been considered as promising nanomaterials for biomedical applications, and are widely used as probe materials for bioimaging and drug delivery. Due to their distinctive photophysical and physicochemical characteristics, good compatibility, and ease of functionalization, CPNs are gaining popularity and being used in more and more cutting-edge biomedical sectors. Common synthetic techniques can be used to synthesize CPNs with adjustable particle size and dispersion. More importantly, the recent development of CPNs for sensing and imaging applications has rendered them as a promising device for use in healthcare. This review provides a synopsis of the preparation and functionalization of CPNs and summarizes the recent advancements of CPNs for biomedical applications. In particular, we discuss their major role in bioimaging, therapeutics, fluorescence, and electrochemical sensing. As a conclusion, we highlight the challenges and future perspectives of biomedical applications of CPNs.

6.
Polymers (Basel) ; 15(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37631449

ABSTRACT

The development of n-type organic semiconductor materials for transporting electrons as part of logic circuits is equally important to the development of p-type materials for transporting holes. Currently, progress in research on n-type materials is relatively backward, and the number of polymers with high electron mobility is limited. As the core component of the organic field-effect transistor (OFET), the rational design and judicious selection of the structure of organic semiconductor materials are crucial to enhance the performance of devices. A novel conjugated copolymer with an all-acceptor structure was synthesized based on an effective chemical structure modification and design strategy. PDPPTT-2Tz was obtained by the Stille coupling of the DPPTT monomer with 2Tz-SnMe3, which features high molecular weight and thermal stability. The low-lying lowest unoccupied molecular orbital (LUMO) energy level of the copolymer was attributed to the introduction of electron-deficient bithiazole. DFT calculations revealed that this material is highly planar. The effect of modulation from a donor-acceptor to acceptor-acceptor structure on the improvement of electron mobility was significant, which showed a maximum value of 1.29 cm2 V-1 s-1 and an average value of 0.81 cm2 V-1 s-1 for electron mobility in BGBC-based OFET devices. Our results demonstrate that DPP-based polymers can be used not only as excellent p-type materials but also as promising n-type materials.

7.
Materials (Basel) ; 16(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36984354

ABSTRACT

This review highlights selected examples, published in the last three to four years, of recent advance in the design, synthesis, properties, and device performance of quinoidal π-conjugated materials. A particular emphasis is placed on emerging materials, such as indophenine dyes that have the potential to enable high-performance devices. We specifically discuss the recent advances and design guidelines of π-conjugated quinoidal molecules from a chemical standpoint. To the best of the authors' knowledge, this review is the first compilation of literature on indophenine-based semiconducting materials covering their scope, limitations, and applications. In the first section, we briefly introduce some of the organic electronic devices that are the basic building blocks for certain applications involving organic semiconductors (OSCs). We introduce the definition of key performance parameters of three organic devices: organic field effect transistors (OFET), organic photovoltaics (OPV), and organic thermoelectric generators (TE). In section two, we review recent progress towards the synthesis of quinoidal semiconducting materials. Our focus will be on indophenine family that has never been reviewed. We discuss the relationship between structural properties and energy levels in this family of molecules. The last section reports the effect of structural modifications on the performance of devices: OFET, OPV and TE. In this review, we provide a general insight into the association between the molecular structure and electronic properties in quinoidal materials, encompassing both small molecules and polymers. We also believe that this review offers benefits to the organic electronics and photovoltaic communities, by shedding light on current trends in the synthesis and progression of promising novel building blocks. This can provide guidance for synthesizing new generations of quinoidal or diradical materials with tunable optoelectronic properties and more outstanding charge carrier mobility.

8.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850429

ABSTRACT

Large-scale production of graphene nanosheets (GNSs) has led to the availability of solution-processable GNSs on the commercial scale. The controlled vacuum filtration method is a scalable process for the preparation of wafer-scale films of GNSs, which can be used for gas sensing applications. Here, we demonstrate the use of this deposition method to produce functional gas sensors, using a chemiresistor structure from GNS solution-based techniques. The GNS suspension was prepared by liquid-phase exfoliation (LPE) and transferred to a polyvinylidene fluoride (PVDF) membrane. The effect of non-covalent functionalization with Co-porphyrin and Fe-phthalocyanines on the sensor properties was studied. The pristine and functionalized GNS films were characterized using different techniques such as Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrical characterizations. The morphological and spectroscopic analyses both confirm that the molecules (Co-porphyrin and Fe-phthalocyanine) were successfully adsorbed onto the GNSs surface through π-π interactions. The chemiresistive sensor response of functionalized GNSs toward the low concentrations of nitrogen dioxide (NO2) (0.5-2 ppm) was studied and compared with those of the film of pristine GNSs. The tests on the sensing performance clearly showed sensitivity to a low concentration of NO2 (5 ppm). Furthermore, the chemical modification of GNSs significantly improves NO2 sensing performance compared to the pristine GNSs. The sensor response can be modulated by the type of adsorbed molecules. Indeed, Co-Por exhibited negative responsiveness (the response of Co-Por-GNS sensors and pristine GNS devices was 13.1% and 15.6%, respectively, after exposure to 0.5 ppm of NO2). Meanwhile, Fe-Phc-GNSs induced the opposite behavior resulting in an increase in the sensor response (the sensitivity was 8.3% and 7.8% of Fe-Phc-GNSs and pristine GNSs, respectively, at 0.5 ppm NO2 gas).

9.
Molecules ; 29(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202654

ABSTRACT

Organic dye semiconductors have received increasing attention as the next generation of semiconductors, and one of their potential applications is as a core component of organic transistors. In this study, two novel diketopyrrolopyrrole (DPP) dye core-based materials were designed and separately prepared using Stille coupling reactions under different palladium catalyst conditions. The molecular weights and elemental compositions were tested to demonstrate that both catalysts could be used to successfully prepare materials of this structure, with the main differences being the weight-average molecular weight and the dispersion index. PDPP-2Py-2Tz I with a longer conjugation length exhibited better thermodynamic stability than the counterpart polymer PDPP-2Py-2Tz II. The intrinsic optical properties of the polymers were relatively similar, while the electrochemical tests showed small differences in their energy levels. The polymers obtained with different catalysts displayed similar and moderate electron mobility in transistor devices, while PDPP-2Py-2Tz I possessed a higher switching ratio. Our study provides a comparison of such dye materials under different catalytic conditions and also demonstrates the great potential of dye materials for optoelectronic applications.

10.
Angew Chem Int Ed Engl ; 61(1): e202112794, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34727416

ABSTRACT

We report the synthesis and optoelectronic properties of TIPS-peri-pentacenopentacene (TIPS-PPP), a vertical extension of TIPS-pentacene (TIPS-PEN) and a low-band-gap material with remarkable stability. We found the synthetic conditions to avoid the competition between 1,2- and 1,4-addition of lithium acetylide on the large aromatic dione. The high stability of TIPS-PPP is due to the peri-fusion which increases the aromaticity by generating two localized aromatic sextets that are flanked with 2 diene fragments, similar to two fused-anthracenes. Like TIPS-PEN, TIPS-PPP shows the archetypal 2D brickwall motif in crystals with a larger transfer integral and smaller reorganization energy. The high mobility of up to 1 cm2 V-1 s-1 was obtained in an organic field-effect transistor fabricated by a wet process. Also, TIPS-PPP was used as a near-infrared (NIR) emitter for NIR organic-light-emitting-diode devices resulting in a high external quantum efficiency at 800 nm.

11.
Data Brief ; 38: 107366, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34584915

ABSTRACT

This scientific data article is related to the research work entitled "Non-Covalent functionalization of Single Walled Carbon Nanotubes with Fe-/Co-porphyrin and Co-phthalocyanine for Field-Effect Transistor Applications" published in "Organic electronics" (10.1016/j.orgel.2021.106212). In this work, we present the data of morphological, chemical and structural analyses of non-covalent functionalization of SWNTs with Co-porphyrin and Co-phthalocyanine. The analyses were performed by Raman spectroscopy, transmission electron microscopy as well as the electrical characterization of CNTFETs. This work is completed by the data of the theoretical calculations performed using Density Functional Theory (DFT).

12.
Sensors (Basel) ; 21(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801383

ABSTRACT

Designing therapeutic and sensor materials to diagnose and eliminate bacterial infections remains a significant challenge for active theragnostic nanoprobes. In the present work, fluorescent/electroactive poly(3-hexylthiophene) P3HT nanoparticles (NPs) stabilized with quaternary ammonium salts using cetyltrimethylammonium bromide (CTAB), (CTAB-P3HT NPs) were prepared using a simple mini-emulsion method. The morphology, spectroscopic properties and electronic properties of CTAB-P3HT NPs were characterized by DLS, zeta potential, SEM, TEM, UV-vis spectrophotometry, fluorescence spectroscopy and electrochemical impedance spectroscopy (EIS). In an aqueous solution, CTAB-P3HT NPs were revealed to be uniformly sized, highly fluorescent and present a highly positively charged NP surface with good electroactivity. Dual detection was demonstrated as the binding of the bacteria to NPs could be observed by fluorescence quenching as well as by the changes in EIS. Binding of E. coli to CTAB-P3HT NPs was demonstrated and LODs of 5 CFU/mL and 250 CFU/mL were obtained by relying on the fluorescence spectroscopy and EIS, respectively. The antimicrobial activity of CTAB-P3HT NPs on bacteria and fungi was also studied under dark and nutritive conditions. An MIC and an MBC of 2.5 µg/mL were obtained with E. coli and with S. aureus, and of 0.312 µg/mL with C. albicans. Additionally a good biocompatibility toward normal human cells (WI38) was observed, which opens the way to their possible use as a therapeutic agent.


Subject(s)
Anti-Infective Agents , Nanoparticles , Anti-Infective Agents/pharmacology , Escherichia coli , Humans , Staphylococcus aureus , Thiophenes
13.
ACS Appl Mater Interfaces ; 12(36): 39979-39990, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805819

ABSTRACT

Fast and efficient identification of bacterial pathogens in water and biological fluids is an important issue in medical, food safety, and public health concerns that requires low-cost and efficient sensing strategies. Impedimetric sensors are promising tools for monitoring bacteria detection because of their reliability and ease-of-use. We herein report a study on new biointerface-based amphiphilic poly(3-hexylthiophene)-b-poly(3-triethylene-glycol-thiophene), P3HT-b-P3TEGT, for label-free impedimetric detection of Escherichia coli (E. coli). This biointerface is fabricated by the self-assembly of P3HT-b-P3TEGT into core-shell nanoparticles, which was further decorated with mannose, leading to an easy-to-use solution-processable nanoparticle material for biosensing. The hydrophilic block P3TEGT promotes antifouling and prevents nonspecific interactions, while improving the ionic and electronic transport properties, thus enhancing the electrochemical-sensing capability in aqueous solution. Self-assembly and micelle formation of P3HT-b-P3TEGT were analyzed by 2D-NMR, Fourier transform infrared, dynamic light scattering, contact angle, and microscopy characterizations. Detection of E. coli was characterized and evaluated using electrochemical impedance spectroscopy and optical and scanning electron microscopy techniques. The sensing layer based on the mannose-functionalized P3HT-b-P3TEGT nanoparticles demonstrates targeting ability toward E. coli pili protein with a detection range from 103 to 107 cfu/mL, and its selectivity was studied with Gram(+) bacteria. Application to real samples was performed by detection of bacteria in tap and the Nile water. The approach developed here shows that water/alcohol-processable-functionalized conjugated polymer nanoparticles are suitable for use as electrode materials, which have potential application in fabrication of a low-cost, label-free impedimetric biosensor for the detection of bacteria in water.


Subject(s)
Biocompatible Materials/chemistry , Escherichia coli/isolation & purification , Nanoparticles/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Biocompatible Materials/chemical synthesis , Escherichia coli/growth & development , Particle Size , Polymers/chemical synthesis , Surface Properties , Surface-Active Agents/chemical synthesis
14.
Chem Sci ; 11(44): 12194-12205, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-34094431

ABSTRACT

Biradicaloid compounds with an open-shell ground state have been the subject of intense research in the past decade. Although diindenoacenes are one of the most developed families, only a few examples have been reported as active layers in organic field-effect transistors (OFETs) with a charge mobility of around 10-3 cm2 V-1 s-1 due to a steric disadvantage of the mesityl group to kinetically stabilize compounds. Herein, we disclose our efforts to improve the charge transport of the diindenoacene family based on hexahydro-diindenopyrene (HDIP) derivatives with different annelation modes for which the most reactive position has been functionalized with (triisopropylsilyl)ethynyl (TIPS) groups. All the HDIP derivatives show remarkably higher stability than that of TIPS-pentacene, enduring for 2 days to more than 30 days, which depends on the oxidation potential, the contribution of the singlet biradical form in the ground state and the annelation mode. The annelation mode affects not only the band gap and the biradical character (y 0) but also the value of the singlet-triplet energy gap (ΔE S-T) that does not follow the reverse trend of y 0. A method based on comparison between experimental and theoretical bond lengths has been disclosed to estimate y 0 and shows that y 0 computed at the projected unrestricted Hartree-Fock (PUHF) level is the most relevant among those reported by all other methods. Thanks to their high stability, thin-film OFETs were successfully fabricated. Well balanced ambipolar transport was obtained in the order of 10-3 cm2 V-1 s-1 in the bottom-gate/top-contact configuration, and unipolar transport in the top-gate/bottom-contact configuration was obtained in the order of 10-1 cm2 V-1 s-1 which is the highest value obtained for biradical compounds with a diindenoacene skeleton.

15.
Adv Colloid Interface Sci ; 275: 102080, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31809990

ABSTRACT

Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.

16.
J Am Chem Soc ; 141(23): 9373-9381, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31117656

ABSTRACT

Designing stable open-shell organic materials through the modifications of the π-topology of molecular organic semiconductors has recently attracted considerable attention. However, their uses as an active layer in organic field-effect transistors (OFETs) are very limited, and the obtained hole and electron charge mobilities are around 10-3 cm2 V-1 s-1. Herein, we disclose the synthesis of two peri-fused materials, so-called tetracenotetracene (TT) and pentacenopentacene (PP), which have low band gaps of 1.79 and 1.42 eV, respectively. Their ground state natures have been investigated by different experiments including steady state absorption, electron spin resonance, superconducting quantum interfering device, and variable-temperature NMR along with DFT calculations. TT and PP have closed-shell and singlet open-shell structures in their ground state, respectively, and possess high stability. Their biradical characteristics were found to be 0.50 and 0.64. The origin of the open-shell character of PP is related to the concomitant opening of two tetracenes with the recovering of two extra aromatic sextets and a small HOMO-LUMO energy gap (gap <1.5 eV). Thanks to the high stability, thin film OFET devices could be fabricated. In TG-BC configuration PP shows a remarkably high hole mobility of 1.4 cm2 V-1 s-1, while TT exhibits a hole mobility of 0.77 cm2 V-1 s-1. In the configuration of BG-TC, ambipolar behaviors for both were obtained with hole and electron mobilities of 0.21 and 0.01 cm2 V-1 s-1 for PP and 0.14 and 0.006 cm2 V-1 s-1 for TT.

17.
Chem Asian J ; 14(10): 1737-1744, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30548168

ABSTRACT

A set of fully-conjugated indenofluorenes has been synthesized and confirmed by solid-state structure analysis. The indeno[2,1-c]fluorenes and their benzo-fused analogues all contain the antiaromatic as-indacene core. The molecules possess high electron affinities and show a broad absorption that reaches into the near-IR region of the electromagnetic spectrum. All of the featured compounds reversibly accept up to two electrons as revealed by cyclic voltammetry. Analysis of molecule tropicity using NICS-XY scan calculations shows that, while the as-indacene core is less paratropic than s-indacene, benz[a]-annulation further reduces the antiaromaticity of the core. Antiaromatic strength of the as-indacene core can also be tuned by the position of fusion of additional arenes on the outer rings.

18.
Chemistry ; 23(64): 16184-16188, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28944984

ABSTRACT

The extension of the pyrene ring from dimethyl 2,2'-(pyrene-1,6-diyl)dibenzoate derivatives by an intramolecular Friedel-Crafts acylation can be realized in an efficient and regioselective manner using triflic acid as proton source. Naphtho-tetracenone derivatives are obtained in high yields at room temperature while Bis-tetracene-diones are prepared upon heating. Both products display interesting fluorescence properties in the visible range with quantum yields varying from 50 to 60 %.

19.
Chemistry ; 23(21): 5076-5080, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28230283

ABSTRACT

The benchmark of soluble organic semiconductors based on acenes is the 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN). However TIPS-PEN still suffers from photoinduced oxidation due to its low degree of aromaticity. Increasing the aromaticity while keeping similar optical and electrochemical properties as well as a shape suitable for good hole transport can be achieved with two-dimensional polycyclic aromatic hydrocarbons (2D-PAHs). Herein, we present an efficient synthesis and characterization of bistetracene derivatives that exhibit a band gap up to 1.71 eV and an increased stability up to 21 times compared to TIPS-PEN and mobility over 0.1 cm2 V-1 s-1 in solution-processed organic field-effect transistors. Based on simple structural consideration, the high stability is attributed to the aromaticity of the bistetracene which is comparable to an anthrancene along each tetracene. According to Clar's sextet rule, the bistetracene should be best regarded as two anthracenes fused at the face bridged by two ethylenic spacers. The synthesis path paves the way towards the preparation of ambipolar and/or longer 2D-PAHs such as bispentacenes and could give rise to organic semiconductors with interesting properties.

20.
Chem Sci ; 6(6): 3402-3409, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-29511505

ABSTRACT

Diindeno[1,2-b:2',1'-n]perylene, a new derivative of the indenoacene family was synthesized, and its electronic, electrochemical, and electrical properties were investigated. This material has a closed shell electronic configuration which corresponds to a quinoidal structure with a low band gap of 1.35 eV. Molecular packing in the single crystal was studied by single-crystal X-ray structural analysis, and this information was subsequently used in the determination of the charge transfer integrals via density functional theory methods. The charge-carrier transport properties of the diindeno[1,2-b:2',1'-n]perylene-5,12-dione and diindeno[1,2-b:2',1'-n]perylene derivatives were investigated through the fabrication and characterization of field-effect transistors via both vacuum-deposited and solution-processed films, respectively. Diindeno[1,2-b:2',1'-n]perylene exhibited a field-effect behaviour with a hole mobility up to 1.7 × 10-3 cm2 V-1 s-1 when the active layer was solution-processed.

SELECTION OF CITATIONS
SEARCH DETAIL
...