Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Transl Psychiatry ; 14(1): 66, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280864

ABSTRACT

Anxiety is a common non-motor symptom in Parkinson's disease (PD) occurring in up to 31% of the patients and affecting their quality of life. Despite the high prevalence, anxiety symptoms in PD are often underdiagnosed and, therefore, undertreated. To date, functional and structural neuroimaging studies have contributed to our understanding of the motor and cognitive symptomatology of PD. Yet, the underlying pathophysiology of anxiety symptoms in PD remains largely unknown and studies on their neural correlates are missing. Here, we used resting-state electroencephalography (RS-EEG) of 68 non-demented PD patients with or without clinically-defined anxiety and 25 healthy controls (HC) to assess spectral and functional connectivity fingerprints characterizing the PD-related anxiety. When comparing the brain activity of the PD anxious group (PD-A, N = 18) to both PD non-anxious (PD-NA, N = 50) and HC groups (N = 25) at baseline, our results showed increased fronto-parietal delta power and decreased frontal beta power depicting the PD-A group. Results also revealed hyper-connectivity networks predominating in delta, theta and gamma bands against prominent hypo-connectivity networks in alpha and beta bands as network signatures of anxiety in PD where the frontal, temporal, limbic and insular lobes exhibited the majority of significant connections. Moreover, the revealed EEG-based electrophysiological signatures were strongly associated with the clinical scores of anxiety and followed their progression trend over the course of the disease. We believe that the identification of the electrophysiological correlates of anxiety in PD using EEG is conducive toward more accurate prognosis and can ultimately support personalized psychiatric follow-up and the development of new therapeutic strategies.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/psychology , Quality of Life , Electroencephalography , Anxiety , Anxiety Disorders , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
3.
Mov Disord ; 38(8): 1451-1460, 2023 08.
Article in English | MEDLINE | ID: mdl-37310340

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients present with a heterogeneous clinical phenotype, including motor, cognitive, sleep, and affective disruptions. However, this heterogeneity is often either ignored or assessed using only clinical assessments. OBJECTIVES: We aimed to identify different PD sub-phenotypes in a longitudinal follow-up analysis and their electrophysiological profile based on resting-state electroencephalography (RS-EEG) and to assess their clinical significance over the course of the disease. METHODS: Using electrophysiological features obtained from RS-EEG recordings and data-driven methods (similarity network fusion and source-space spectral analysis), we have performed a clustering analysis to identify disease sub-phenotypes and we examined whether their different patterns of disruption are predictive of disease outcome. RESULTS: We showed that PD patients (n = 44) can be sub-grouped into three phenotypes with distinct electrophysiological profiles. These clusters are characterized by different levels of disruptions in the somatomotor network (Δ and ß band), the frontotemporal network (α2 band) and the default mode network (α1 band), which consistently correlate with clinical profiles and disease courses. These clusters are classified into either moderate (only-motor) or mild-to-severe (diffuse) disease. We showed that EEG features can predict cognitive evolution of PD patients from baseline, when the cognitive clinical scores were overlapped. CONCLUSIONS: The identification of novel PD subtypes based on electrical brain activity signatures may provide a more accurate prognosis in individual patients in clinical practice and help to stratify subgroups in clinical trials. Innovative profiling in PD can also support new therapeutic strategies that are brain-based and designed to modulate brain activity disruption. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/psychology , Brain , Electroencephalography , Brain Mapping , Prognosis
4.
Mov Disord ; 37(7): 1444-1453, 2022 07.
Article in English | MEDLINE | ID: mdl-35420713

ABSTRACT

BACKGROUND: Tracking longitudinal functional brain dysconnectivity in Parkinson's disease (PD) is a key element to decoding the underlying physiopathology and understanding PD progression. OBJECTIVES: The objectives of this follow-up study were to explore, for the first time, the longitudinal changes in the functional brain networks of PD patients over 5 years and to associate them with their cognitive performance and the lateralization of motor symptoms. METHODS: We used a 5-year longitudinal cohort of PD patients (n = 35) who completed motor and non-motor assessments and sequent resting state (RS) high-density electroencephalography (HD-EEG) recordings at three timepoints: baseline (BL), 3 years follow-up (3YFU) and 5 years follow-up (5YFU). We assessed disruptions in frequency-dependent functional networks over the course of the disease and explored their relation to clinical symptomatology. RESULTS: In contrast with HC (n = 32), PD patients showed a gradual connectivity impairment in α2 (10-13 Hz) and ß (13-30 Hz) frequency bands. The deterioration in the global cognitive assessment was strongly correlated with the disconnected networks. These disconnected networks were also associated with the lateralization of motor symptoms, revealing a dominance of the right hemisphere in terms of impaired connections in the left-affected PD patients in contrast to dominance of the left hemisphere in the right-affected PD patients. CONCLUSIONS: Taken together, our findings suggest that with disease progression, dysconnectivity in the brain networks in PD can reflect the deterioration of global cognitive deficits and the lateralization of motor symptoms. RS HD-EEG may be an early biomarker of PD motor and non-motor progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Electroencephalography , Follow-Up Studies , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Parkinson Disease/complications
5.
Front Neurosci ; 14: 575538, 2020.
Article in English | MEDLINE | ID: mdl-33328850

ABSTRACT

Schizophrenia is a complex disorder about which much is still unknown. Potential treatments, such as transcranial magnetic stimulation (TMS), have not been exploited, in part because of the variability in behavioral response. This can be overcome with the use of response biomarkers. It has been however shown that repetitive transcranial magnetic stimulation (rTMS) can the relieve positive and negative symptoms of schizophrenia, particularly auditory verbal hallucinations (AVH). This exploratory work aims to establish a quantitative methodological tool, based on high-density electroencephalogram (HD-EEG) data analysis, to assess the effect of rTMS on patients with schizophrenia and AVH. Ten schizophrenia patients with drug-resistant AVH were divided into two groups: the treatment group (TG) received 1 Hz rTMS treatment during 10 daily sessions (900 pulses/session) over the left T3-P3 International 10-20 location. The control group (CG) received rTMS treatment over the Cz (vertex) EEG location. We used the P300 oddball auditory paradigm, known for its reduced amplitude in schizophrenia with AVH, and recorded high-density electroencephalography (HD-EEG, 256 channels), twice for each patient: pre-rTMS and 1 week post-rTMS treatment. The use of HD-EEG enabled the analysis of the data in the time domain, but also in the frequency and source-space connectivity domains. The HD-EEG data were linked with the clinical outcome derived from the auditory hallucinations subscale (AHS) of the Psychotic Symptom Rating Scale (PSYRATS), the Quality of Life Scale (QoLS), and the Depression, Anxiety and Stress Scale (DASS). The general results show a variability between subjects, independent of the group they belong to. The time domain showed a higher N1-P3 amplitude post-rTMS, the frequency domain a higher power spectral density (PSD) in the alpha and beta bands, and the connectivity analysis revealed a higher brain network integration (quantified using the participation coefficient) in the beta band. Despite the small number of subjects and the high variability of the results, this work shows a robust data analysis and an interplay between morphology, spectral, and connectivity data. The identification of a trend post-rTMS for each domain in our results is a first step toward the definition of quantitative neurophysiological parameters to assess rTMS treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...