Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 21(1): 527, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34649558

ABSTRACT

BACKGROUND: Mastication is one of the most fundamental functions for the conservation of human life. To clarify the pathogenetic mechanism of various oral dysfunctions, the demand for devices for evaluating stomatognathic function has been increasing. The aim of the present study was to develop a system to reconstruct and visualize 3-dimensional (3D) mandibular movements relative to the maxilla, including dynamic transition of occlusal contacts between the upper and lower dentitions during mastication in mice. METHODS: First, mandibular movements with six degrees of freedom were measured using a motion capture system comprising two high-speed cameras and four reflective markers. Second, 3D models of maxillofacial structure were reconstructed from micro-computed tomography images. Movement trajectories of anatomical landmark points on the mandible were then reproduced by integrating the kinematic data of mandibular movements with the anatomical data of maxillofacial structures. Lastly, 3D surface images of the upper dentition with the surrounding maxillofacial structures were transferred to each of the motion capture images to reproduce mandibular movements relative to the maxilla. We also performed electromyography (EMG) of masticatory muscles associated with mandibular movements. RESULTS: The developed system could reproduce the 3D movement trajectories of arbitrary points on the mandible, such as incisor, molars and condylar points with high accuracy and could visualize dynamic transitions of occlusal contacts between upper and lower teeth associated with mandibular movements. CONCLUSIONS: The proposed system has potential to elucidate the mechanisms underlying motor coordination of masticatory muscles and to clarify their roles during mastication by taking advantage of the capability to record EMG data synchronously with mandibular movements. Such insights will enhance our understanding of the pathogenesis and diagnosis of oral motor disorders by allowing comparisons between normal mice and genetically modified mice with oral behavioral dysfunctions.


Subject(s)
Mastication , Maxilla , Animals , Biomechanical Phenomena , Mandible/diagnostic imaging , Maxilla/diagnostic imaging , Mice , Movement , X-Ray Microtomography
2.
Biomed Eng Online ; 18(1): 59, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31096969

ABSTRACT

BACKGROUND: Mastication is one of the most fundamental functions for the conservation of life. The demand for devices for evaluating stomatognathic function, for instance, recording mandibular movements or masticatory muscle activities using animal models, has been increasing in recent years to elucidate neuromuscular control mechanisms of mastication and to investigate the etiology of oral motor disorders. To identify the fundamental characteristics of the jaw movements of mice, we developed a new device that reconstructs the three-dimensional (3D) movement trajectories on an arbitrary point on the mandible during mastication. METHODS: First, jaw movements with six degrees of freedom were measured using a motion capture system comprising two high-speed cameras and four reflective markers. Second, a 3D model of the mandible including the markers was created from micro-computed tomography images. Then, the jaw movement trajectory on the certain anatomical point was reproduced by integrating the kinematic data of the jaw movements with the geometric data of the mandible. RESULTS: The 3D movements at any points on the mandible, such as the condyle, molar, and incisor during mastication, could be calculated and visualized with an accuracy > 0.041 mm in 3D space. The masticatory cycle was found to be clearly divided into three phases, namely, the opening, closing, and occlusal phases in mice. CONCLUSIONS: The proposed system can reproduce and visualize the movements of internal anatomical points such as condylar points precisely by combining kinematic data with geometric data. The findings obtained from this system could facilitate our understanding of the pathogenesis of eating disorders or other oral motor disorders when we could compare the parameters of stomatognathic function of normal mice and those of genetically modified mice with oral behavioral dysfunctions.


Subject(s)
Imaging, Three-Dimensional , Mandible/diagnostic imaging , Mandible/physiology , Movement , X-Ray Microtomography , Animals , Biomechanical Phenomena , Mice
3.
J Clin Biochem Nutr ; 64(1): 45-51, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30705511

ABSTRACT

The Chinese herbal medicine Qing Dai has been traditionally used for the treatment of various inflammatory diseases. We previously reported that reactive oxygen species play an important role in bisphosphonate-induced gastrointestinal injuries and that Qing Dai improved ulcerative colitis by scavenging reactive oxygen species. In this study, we investigated whether Qing Dai prevented bisphosphonate-induced gastric cellular injuries. Risedronate (a bisphosphonate) was added to rat gastric mucosal cells. Risedronate-induced cellular injury, cellular lipid peroxidation, mitochondrial membrane potential, and reactive oxygen species production in rat gastric mucosal cells were examined via viable cell counting, specific fluorescent indicators, and electron spin resonance. Pretreatment with Qing Dai attenuated the fluorescence intensity of diphenyl-1-pyrenylphosphine and MitoSox as well as the signal intensities of electron spin resonance. Cell viability improved from 20% to 80% by pretreatment with Qing Dai. Thus, Qing Dai prevented this injury by suppressing mitochondrial reactive oxygen species production, which is the main cause of cellular lipid peroxidation. Qing Dai also maintained mitochondrial potential, reducing reactive oxygen species production. We conclude that Qing Dai has protective effects on bisphosphonate-induced gastrointestinal injury and thus has the potential for clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...