Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 269(1): 202-11, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11784314

ABSTRACT

When the alpha and beta chains were separated from human oxyhemoglobin (HbO(2)), each individual chain was oxidized easily to the ferric form, their rates being almost the same with a very strong acid-catalysis. In the HbO(2) tetramer, on the other hand, both chains become considerably resistant to autoxidation over a wide range of pH values (pH 5-11). Moreover, HbA showed a biphasic autoxidation curve containing the two rate constants, i.e. k(f) for the fast oxidation due to the alpha chains, and k(s) for the slow oxidation to the beta chains. The k(f)/k(s) ratio increased from 3.2 at pH 7.5-7.3 at pH 5.8, but became 1 : 1 at pH values higher than 8.5. In the present work, we used the valency hybrid tetramers such as (alpha(3+))2(beta O(2))(2) and (alpha O(2)(2)(beta(3+))(2), and demonstrated that the autoxidation rate of either the alpha or beta chains (when O2- ligated) is independent of the valency state of the corresponding counterpart chains. From these results, we have concluded that the formation of the alpha 1 beta 1 or alpha 2 beta 2 contact suppresses remarkably the autoxidation rate of the beta chain and thus plays a key role in stabilizing the HbO(2) tetramer. Its mechanistic details were also given in terms of a nucleophilic displacement of O(2)(-) from the FeO(2) center, and the emphasis was placed on the proton-catalyzed process performed by the distal histidine residue.


Subject(s)
Hemoglobins/metabolism , Iron/chemistry , Oxyhemoglobins/chemistry , Dimerization , Hemoglobins/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...