Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 11: 1630-40, 2011.
Article in English | MEDLINE | ID: mdl-22125423

ABSTRACT

A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m(3) in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0). Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys.


Subject(s)
Air Pollutants/analysis , Chemical Industry , Mercury/analysis , China , Equipment and Supplies
2.
Biosens Bioelectron ; 17(3): 173-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11839470

ABSTRACT

We made a biosensor based on ion-sensitive field effect transistor (ISFET) using P450 monooxygenase. ISFETs are electrical devices and have been used as pH sensors. We used genetically engineered P450 monooxygenase for our research because of its high enzymatic activity. The fusion enzyme between rat CYP1A1P450 monooxygenase and yeast NADPH-cytochrome P450 oxidoreductase was expressed in yeast Saccharomyces cerevisiae strain AH22. Yeast microsomal membranes were immobilized in an agarose layer on the ISFET. o-Deethylation of 7-ethoxycoumarin to 7-hydroxycoumarin was catalyzed by the enzyme in the presence of nicotinamide adenine dinucleotide phosphate reduced form (NADPH). Formation of 7-hydroxycoumarin from 7-ethoxycoumarin was also measured by fluorescence. The difference of the voltage between the ISFET device and control device without enzymes showed a voltage increase along with the enzymatic reaction of P450 monooxygenases, and this voltage increase in the device was inhibited by addition of MnCl(2), an inhibitor of P450 monooxygenase. There was a positive correlation between the voltage increase in the ISFET device and the fluorescence intensity. This is the first electrochemical biosensing using P450 monooxygenases immobilized on the ISFET, and is applicable to the sensing of chlorophenol compounds.


Subject(s)
Biosensing Techniques/methods , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Chlorophenols/analysis , Electrochemistry , Hydrogen-Ion Concentration , Manganese/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...