Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17425, 2024.
Article in English | MEDLINE | ID: mdl-38832036

ABSTRACT

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Subject(s)
Bivalvia , Animals , Mediterranean Sea , Bivalvia/classification , Crustacea/classification , Mollusca/classification , Israel , Animal Distribution , Introduced Species
2.
Nature ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926582

ABSTRACT

The region with the highest marine biodiversity on our planet is known as the Coral Triangle or Indo-Australian Archipelago (IAA)1,2. Its enormous biodiversity has long attracted the interest of biologists; however, the detailed evolutionary history of the IAA biodiversity hotspot remains poorly understood3. Here we present a high-resolution reconstruction of the Cenozoic diversity history of the IAA by inferring speciation-extinction dynamics using a comprehensive fossil dataset. We found that the IAA has exhibited a unidirectional diversification trend since about 25 million years ago, following a roughly logistic increase until a diversity plateau beginning about 2.6 million years ago. The growth of diversity was primarily controlled by diversity dependency and habitat size, and also facilitated by the alleviation of thermal stress after 13.9 million years ago. Distinct net diversification peaks were recorded at about 25, 20, 16, 12 and 5 million years ago, which were probably related to major tectonic events in addition to climate transitions. Key biogeographic processes had far-reaching effects on the IAA diversity as shown by the long-term waning of the Tethyan descendants versus the waxing of cosmopolitan and IAA taxa. Finally, it seems that the absence of major extinctions and the Cenozoic cooling have been essential in making the IAA the richest marine biodiversity hotspot on Earth.

3.
Mar Pollut Bull ; 197: 115757, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37988964

ABSTRACT

Most anthropogenic nitrogen (N) reaches coastal waters via rivers carrying increasing loads of sewage, fertilizer, and sediments. To understand anthropogenic N impacts, we need to understand historical N-dynamics before human influence. Stable isotope ratios of N preserved in carbonates are one way to create temporal N records. However, records that span periods of human occupation are scarce, limiting our ability to contextualize modern N dynamics. Here, we produce a fossil-bound N-record using coral subfossils, spanning 6700 years in China's Greater Bay Area (GBA). We found that during the mid-to-late Holocene, the GBA's coastal N was dominated by fluvial sources. The weakening of the Asia monsoon throughout the late-Holocene decreased river outflow, leading to a relative increase of marine nitrate. This source shift from riverine-to-ocean dominance was overprinted by anthropogenic N. During the late 1980s to early 1990s, human development and associated effluent inundated the coastal system, contributing to the decline of coral communities.


Subject(s)
Anthozoa , Nitrogen , Animals , Humans , Nitrogen/analysis , Environmental Monitoring , Isotopes , Carbonates , Rivers , China , Nitrogen Isotopes/analysis
4.
Science ; 379(6636): 978-981, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893246

ABSTRACT

Ocean manipulation to mitigate climate change may harm deep-sea ecosystems.


Subject(s)
Climate Change , Ecosystem , Oceans and Seas
6.
Nature ; 614(7949): 626-628, 2023 02.
Article in English | MEDLINE | ID: mdl-36792895
7.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Article in English | MEDLINE | ID: mdl-35798839

ABSTRACT

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Subject(s)
Biodiversity , Ecosystem , Animals , Climate Change , Humans
8.
Science ; 375(6576): 25-26, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34990227

ABSTRACT

Fossil records from tropical oceans predict biodiversity loss in a warmer world.


Subject(s)
Oceans and Seas
9.
Glob Ecol Biogeogr ; 31(11): 2162-2171, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36606261

ABSTRACT

Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of "no data" is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language.

10.
Biol Lett ; 17(7): 20200666, 2021 07.
Article in English | MEDLINE | ID: mdl-34283931

ABSTRACT

The deep sea comprises more than 90% of the ocean; therefore, understanding the controlling factors of biodiversity in the deep sea is of great importance for predicting future changes in the functioning of the ocean system. Consensus has recently been increasing on two plausible factors that have often been discussed as the drivers of deep-sea species richness in the contexts of the species-energy and physiological tolerance hypotheses: (i) seafloor particulate organic carbon (POC) derived from primary production in the euphotic zone and (ii) temperature. Nonetheless, factors that drive deep-sea biodiversity are still actively debated potentially owing to a mirage of correlations (sign and magnitude are generally time dependent), which are often found in nonlinear, complex ecological systems, making the characterization of causalities difficult. Here, we tested the causal influences of POC flux and temperature on species richness using long-term palaeoecological datasets derived from sediment core samples and convergent cross mapping, a numerical method for characterizing causal relationships in complex systems. The results showed that temperature, but not POC flux, influenced species richness over 103-104-year time scales. The temperature-richness relationship in the deep sea suggests that human-induced future climate change may, under some conditions, affect deep-sea ecosystems through deep-water circulation changes rather than surface productivity changes.


Subject(s)
Biodiversity , Ecosystem , Causality , Climate Change , Humans , Temperature
12.
Sci Adv ; 6(40)2020 10.
Article in English | MEDLINE | ID: mdl-33008908

ABSTRACT

Observations of coral reef losses to climate change far exceed our understanding of historical degradation before anthropogenic warming. This is a critical gap to fill as conservation efforts simultaneously work to reverse climate change while restoring coral reef diversity and function. Here, we focused on southern China's Greater Bay Area, where coral communities persist despite centuries of coral mining, fishing, dredging, development, and pollution. We compared subfossil assemblages with modern-day communities and revealed a 40% decrease in generic diversity, concomitant to a shift from competitive to stress-tolerant species dominance since the mid-Holocene. Regions with characteristically poor water quality-high chl-a, dissolved inorganic nitrogen, and turbidity-had lower contemporary diversity and the greatest community composition shift observed in the past, driven by the near extirpation of Acropora These observations highlight the urgent need to mitigate local stressors from development in concert with curbing greenhouse gas emissions.


Subject(s)
Anthozoa , Coral Reefs , Animals , China , Climate Change , Ecosystem , Water Quality
13.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33097535

ABSTRACT

The coastal tussac (Poa flabellata) grasslands of the Falkland Islands are a critical seabird breeding habitat but have been drastically reduced by grazing and erosion. Meanwhile, the sensitivity of seabirds and tussac to climate change is unknown because of a lack of long-term records in the South Atlantic. Our 14,000-year multiproxy record reveals an ecosystem state shift following seabird establishment 5000 years ago, as marine-derived nutrients from guano facilitated tussac establishment, peat productivity, and increased fire. Seabird arrival coincided with regional cooling, suggesting that the Falkland Islands are a cold-climate refugium. Conservation efforts focusing on tussac restoration should include this terrestrial-marine linkage, although a warming Southern Ocean calls into question the long-term viability of the Falkland Islands as habitat for low-latitude seabirds.

14.
Glob Chang Biol ; 26(9): 4664-4678, 2020 09.
Article in English | MEDLINE | ID: mdl-32531093

ABSTRACT

Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.


Subject(s)
Climate Change , Ecosystem , Biodiversity , Humans , Minerals , Mining , Oceans and Seas
15.
Proc Natl Acad Sci U S A ; 117(23): 12891-12896, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457146

ABSTRACT

A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.


Subject(s)
Biodiversity , Climate Change , Plankton/physiology , Animals , Fossils , Geologic Sediments , Tropical Climate
16.
Nat Ecol Evol ; 4(2): 181-192, 2020 02.
Article in English | MEDLINE | ID: mdl-32015428

ABSTRACT

The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.


Subject(s)
Biodiversity , Ecosystem , Climate Change , Ecology , Oceans and Seas
17.
Science ; 359(6371)2018 01 05.
Article in English | MEDLINE | ID: mdl-29301986

ABSTRACT

Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems.


Subject(s)
Environmental Monitoring , Global Warming , Oxygen/analysis , Seawater/chemistry , Adaptation, Biological , Animals , Aquatic Organisms , Conservation of Natural Resources , Fisheries , Oceans and Seas
18.
Sci Rep ; 7(1): 15423, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29133878

ABSTRACT

The Cretaceous Period stands out in Earth's geologic history by ubiquitous and sustained massive eruption of lava, forming several enormous igneous plateaus in the ocean basins worldwide. It has been proposed that the subaerial phases of Cretaceous oceanic plateau formation spurred the global environmental deterioration, yet this view is supported by patchy fossil and/or rock evidence for uplifting of the plateau summits above the sea level. Reported here is by far the most comprehensive case of Cretaceous plateau emergence at northern Shatsky Rise, Northwest Pacific, based on the integration of unique micropalaeontological and seismic evidence. From just above the flat-topped igneous edifice, recent Integrated Ocean Drilling Program (at Site U1346) recovered early Cretaceous (Hauterivian) ostracod and foraminiferal assemblages showing marked shallow-marine preferences. Most intriguing discovery is an ostracod taxon with well-developed eye tubercles, which serves as compelling palaeobiological evidence for a very shallow, euphotic setting. By linking the nearshore biofacies (<20 m water depth) to the basement topography undoubtedly shaped by subaerial weathering and/or erosion, it is obvious that northern Shatsky Rise was remarkably emergent during its final emplacement phase. We suggest that early Cretaceous surface environments might have been affected, at least in part, by Shatsky Rise subaerial volcanism.

19.
Biol Rev Camb Philos Soc ; 92(1): 199-215, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26420174

ABSTRACT

There is growing interest in the integration of macroecology and palaeoecology towards a better understanding of past, present, and anticipated future biodiversity dynamics. However, the empirical basis for this integration has thus far been limited. Here we review prospects for a macroecology-palaeoecology integration in biodiversity analyses with a focus on marine microfossils [i.e. small (or small parts of) organisms with high fossilization potential, such as foraminifera, ostracodes, diatoms, radiolaria, coccolithophores, dinoflagellates, and ichthyoliths]. Marine microfossils represent a useful model system for such integrative research because of their high abundance, large spatiotemporal coverage, and good taxonomic and temporal resolution. The microfossil record allows for quantitative cross-scale research designs, which help in answering fundamental questions about marine biodiversity, including the causes behind similarities in patterns of latitudinal and longitudinal variation across taxa, the degree of constancy of observed gradients over time, and the relative importance of hypothesized drivers that may explain past or present biodiversity patterns. The inclusion of a deep-time perspective based on high-resolution microfossil records may be an important step for the further maturation of macroecology. An improved integration of macroecology and palaeoecology would aid in our understanding of the balance of ecological and evolutionary mechanisms that have shaped the biosphere we inhabit today and affect how it may change in the future.


Subject(s)
Biodiversity , Ecology/methods , Fossils , Models, Biological , Biological Evolution , Ecology/trends , Foraminifera
20.
Zoolog Sci ; 33(5): 555-565, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27715418

ABSTRACT

Deep-sea hydrothermal vent fields are among the most extreme habitats on Earth. Major research interests in these ecosystems have focused on the anomalous macrofauna, which are nourished by chemoautotrophic bacterial endosymbionts. In contrast, the meiofauna is largely overlooked in this chemosynthetic environment. The present study describes a new species, Thomontocypris shimanagai sp. nov. (Crustacea: Ostracoda), which was collected from the surface of colonies of neoverrucid barnacles and paralvinellid worms on the chimneys at the Myojin-sho submarine caldera. This is the first discovery of an ostracode from deep-sea hydrothermal vent environments in the western Pacific region. In addition to the species description, we discuss three aspects: 1) adaptation, 2) endemism, and 3) dispersal strategy of the hydrothermal vent ostracodes. Regarding these aspects, we conclude the following: 1) the new species may feed on sloughed-off tissues, mucus secretions, or fecal pellets of sessile organisms, rather than depend on chemoautotrophic bacteria as symbionts for energy; 2) as has been pointed out by other studies, Thomontocypris does not likely represent a vent-specific genus; however, this new species is considered to be endemic at the species level, as it has not been found outside of the type locality; and 3) this new species may have migrated from adjacent deep-sea chemosynthesis-based habitats, such as hydrothermal vents, with wood falls potentially having acted as stepping stones.


Subject(s)
Adaptation, Physiological , Animal Distribution/physiology , Crustacea/classification , Hydrothermal Vents , Animals , Crustacea/anatomy & histology , Crustacea/genetics , Pacific Ocean , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...