Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 47(6): 1163-1171, 2024.
Article in English | MEDLINE | ID: mdl-38880624

ABSTRACT

The vital role of bile canaliculus (BC) in liver function is closely related to its morphology. Electron microscopy has contributed to understanding BC morphology; however, its invasiveness limits its use in living specimens. Here, we report non-invasive characterization of BC formation using refractive index (RI) tomography. First, we investigated and characterized the RI distribution of BCs in two-dimensional (2D) cultured HepG2 cells. BCs were identified based on their distinct morphology and functionality, as confirmed using a fluorescence-labeled bile acid analog. The RI distribution of BCs exhibited three common features: (1) luminal spaces with a low RI between adjacent hepatocytes; (2) luminal spaces surrounded by a membranous structure with a high RI; and (3) multiple microvillus structures with a high RI within the lumen. Second, we demonstrated the characterization of BC structures in a three-dimensional (3D) culture model, which is more relevant to the in vivo environment but more difficult to evaluate than 2D cultures. Various BC structures were identified inside HepG2 spheroids with the three features of RI distribution. Third, we conducted comparative analyses and found that the BC lumina of spheroids had higher circularity and lower RI standard deviation than 2D cultures. We also addressed comparison of BC and intracellular lumen-like structures within a HepG2 spheroid, and found that the BC lumina had higher RI and longer perimeter than intracellular lumen-like structures. Our demonstration of the non-destructive, label-free visualization and quantitative characterization of living BC structures will be a basis for various hepatological and pharmaceutical applications.


Subject(s)
Bile Canaliculi , Humans , Hep G2 Cells , Refractometry/methods , Spheroids, Cellular/ultrastructure , Tomography/methods , Hepatocytes/ultrastructure , Cell Culture Techniques
2.
Light Sci Appl ; 12(1): 101, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37105955

ABSTRACT

Refractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample make its visualization challenging. This paper proposes a deep RI tomographic approach to overcome MS and SIA and allow the enhanced reconstruction of thick samples compared to that enabled by conventional linear-model-based RI tomography. The proposed approach consists of partial RI reconstruction using multiple holograms acquired with angular diversity and their backpropagation using the reconstructed partial RI map, which unambiguously reconstructs the next partial volume. Repeating this operation efficiently reconstructs the entire RI tomogram while suppressing MS and SIA. We visualized a multicellular spheroid of diameter 140 µm within minutes of reconstruction, thereby demonstrating the enhanced deep visualization capability and computational efficiency of the proposed method compared to those of conventional RI tomography. Furthermore, we quantified the high-RI structures and morphological changes inside multicellular spheroids, indicating that the proposed method can retrieve biologically relevant information from the RI distribution. Benefitting from the excellent biological interpretability of RI distributions, the label-free deep visualization capability of the proposed method facilitates a noninvasive understanding of the architecture and time-course morphological changes of thick multicellular specimens.

3.
Biomed Opt Express ; 13(2): 962-979, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35284178

ABSTRACT

Refractive index (RI) tomography is a quantitative tomographic technique used to visualize the intrinsic contrast of unlabeled biological samples. Conventional RI reconstruction algorithms are based on weak-scattering approximation, such as the Born or Rytov approximation. Although these linear algorithms are computationally efficient, they are invalid when the fields are strongly distorted by multiple scattering (MS) of specimens. Herein, we propose an approach to reconstruct the RI distributions of MS objects even under weak-scattering approximation using an MS-suppressive operation. The operation converts the distorted fields into MS-suppressed fields, where weak-scattering approximation is applicable. Using this approach, we reconstructed a whole multicellular spheroid and successfully visualized its internal subcellular structures. Our work facilitates the realization of RI tomography of MS specimens and label-free quantitative analysis of 3D multicellular specimens.

4.
Genes Cells ; 26(8): 596-610, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34086395

ABSTRACT

Various studies have been conducted to obtain quantitative phase information based on differential interference contrast (DIC) microscopy. As one such attempt, we propose in this study a single-shot quantitative phase imaging (QPI) method by combining two developments. First, an add-on optical system to a commercialized DIC microscope was developed to perform quantitative phase gradient imaging (QPGI) with single image acquisition using a polarization camera. Second, an algorithm was formulated to reconstitute QPI from the obtained QPGI by reducing linear artifacts, which arise in simply integrated QPGI images. To demonstrate the applicability of the developed system in cell biology, the system was used to measure various cell lines and compared with fluorescence microscopy images of the same field of view. Consistent with previous studies, nucleoli and lipid droplets can be imaged by the system with greater optical path lengths (OPL). The results also implied that combining fluorescence microscopy and the developed system might be more informative for cell biology research than using these methods individually. Exploiting the single-shot performance of the developed system, time-lapse imaging was also conducted to visualize the dynamics of intracellular granules in monocyte-/macrophage-like cells. Our proposed approach may accelerate the implementation of QPI in standard biomedical laboratories.


Subject(s)
Microscopy, Interference/methods , Time-Lapse Imaging/methods , Cell Nucleolus/ultrastructure , Hep G2 Cells , Humans , Lipid Droplets/ultrastructure , MCF-7 Cells
5.
Biomed Opt Express ; 11(4): 2213-2223, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341878

ABSTRACT

We propose a line-field quantitative phase-imaging flow cytometer for analyzing large populations of label-free cells. Hydrodynamical focusing brings cells into the focus plane of an optical system while diluting the cell suspension, resulting in decreased throughput rate. To overcome the trade-off between throughput rate and in-focus imaging, our cytometer involves digitally extending the depth-of-focus on loosely hydrodynamically focusing cell suspensions. The cells outside the depth-of-focus range in the 70-µm diameter of the core flow were automatically digitally refocused after image acquisition. We verified that refocusing was successful with our cytometer through statistical analysis of image quality before and after digital refocusing.

SELECTION OF CITATIONS
SEARCH DETAIL
...