Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 142(2): 353-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26298837

ABSTRACT

PURPOSE: Microsatellite instability (MSI) in human endometrial cancer (EC) was analysed using a unique fluorescent technique. MSI is associated with various human neoplasms. However, the reported frequency of MSI differs widely in each malignancy. Methodological difficulties have in fact been pointed out in its assay techniques. METHODS: We previously established a sensitive fluorescent technique in which the major methodological problems are overcome. Application of this technique has revealed two distinct modes of microsatellite alterations, i.e. Type A and Type B. In the present study, we have applied this technique to 94 ECs. RESULTS: Significant microsatellite alterations were observed in 38 (40.4%) tumours of the panel. The two modes, Type A and Type B, were indeed observed in this malignancy. More importantly, we found that the modes more closely correlated with the molecular and clinicopathological backgrounds of the tumours than the established and widely used MSI grades, MSI-H and MSI-L. Type B MSI widely correlated with family history of hereditary non-polyposis colorectal cancer-associated cancers, whereas MSI-H only did with that of colorectal cancer. Furthermore, mutation in the KRAS oncogene, which has been regarded as generally infrequent in microsatellite-unstable tumours, was clearly associated with Type A MSI. CONCLUSIONS: Our observations may suggest a biological relevance and a potential utility of the modal classification of MSI and, furthermore, added complexities to genomic instability underlying tumourigenesis in human endometrium.


Subject(s)
Carcinoma, Endometrioid/genetics , Endometrial Neoplasms/genetics , Microsatellite Instability , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Female , Fluorescent Dyes/chemistry , Humans , Immunohistochemistry , Middle Aged , Sequence Analysis, DNA
2.
Talanta ; 56(3): 505-13, 2002 Mar 04.
Article in English | MEDLINE | ID: mdl-18968523

ABSTRACT

To investigate quantitatively the anion effect on the extraction-ability and -selectivity of benzo-18-crown-6 (B18C6) for alkali metal ions, the constants for overall extraction into various diluents having low dielectric constants (K(ex)) and aqueous ion-pair formation (K(MLA)) of B18C6-sodium and potassium perchlorate 1:1:1 complexes (MLA) were determined at 25 degrees C. The K(ex) value was analyzed by the four fundamental equilibrium constants. The K(MLA) values were determined by applying our established method to this perchlorate extraction system. The K(M(B18C6)A) value of the perchlorate is much larger for K(+) than for Na(+), and is much smaller than that of the picrate. The K(M(B18C6)A) value makes a minor contribution to the magnitude of K(ex) for the perchlorate system, but a major contribution to that for the picrate one. The distribution behavior of the B18C6 1:1:1 complexes with the alkali metal perchlorates follows the regular solution theory. For the diluent with a high dipole moment, however, the 1:1:1 complexes somewhat undergo the dipole-dipole interaction. B18C6 always shows very high extraction selectivity for KClO(4) over NaClO(4), which is determined mostly by the much greater log/(log K(MLA)) value for K(+) than for Na(+). The extraction-ability and -selectivity of B18C6 for Na(+) and K(+) ions with a perchlorate ion were compared with those with a picrate ion in terms of the fundamental equilibrium constants. The K(+) extraction-selectivity of B18C6 over Na(+) for the perchlorate system is superior to that for the picrate one, which is caused largely by the greater log/(log K(K(B18C6)A))-log/(log K(Na(B18C6)A)) value for the perchlorate than for the picrate. The perchlorate system is recommended for extraction separation of K(+) from Na(+).

SELECTION OF CITATIONS
SEARCH DETAIL
...