Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 644: 123297, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37574114

ABSTRACT

DNA nanostructures are promising delivery carriers because of their flexible structural design and high biocompatibility. Selectivity in cellular uptake is an important factor in the development of DNA-nanostructure-based delivery carriers. In this study, DNA nanotubes were selected as the DNA structures, and their selectivity for cellular uptake and the mechanisms involved were investigated. Unlike DNA nanostructures such as polypod-like nanostructured DNA or DNA tetrahedrons, which are easily taken up by macrophages, the formation of DNA nanotubes increases uptake by fibroblasts and fibroblast-like cells. We focused on the collagen expressed in cells as a factor in this process, and found DNA nanotube formation increased the affinity for type I collagen compared with that of single-stranded DNA. Collagenase treatment removes collagen from fibroblasts and reduces the uptake of DNA nanotubes by fibroblasts. We directly observed DNA nanotube uptake by fibroblasts using transmission electron microscopy, whereby the nanotubes were distributed on the cell surface, folded, fragmented, and taken up by phagocytosis. In conclusion, we demonstrated a novel finding that DNA nanotubes are readily taken up by fibroblasts and myoblasts.


Subject(s)
Nanostructures , Nanotubes , Nanotubes/chemistry , Collagen , Nanostructures/chemistry , DNA/chemistry , Fibroblasts
2.
J Pharm Sci ; 111(4): 1133-1141, 2022 04.
Article in English | MEDLINE | ID: mdl-34871560

ABSTRACT

Unmethylated cytosine-phosphate-guanine (CpG) DNA stimulates mammalian immune cells through recognition by Toll-like receptor 9 (TLR9). Therefore, CpG DNA is expected to be an effective adjuvant for the treatment of immune and allergic diseases. However, challenges, such as low stability against DNase and low delivery efficiency for immune cells, still need to be resolved for the application of CpG DNA. To overcome these challenges, we developed DNA supramolecules consisting of long single-stranded DNA (lss-DNA) synthesized using rolling circle amplification (RCA) and cholesterol-modified DNA (chol-DNA). Lss-DNAs containing multiple CpG motifs were annealed with complementary chol-DNAs to form DNA supramolecules through hydrophobic interactions. Transmission electron microscopy revealed that lss-DNA mixed with chol-DNA formed micrometer-sized DNA supramolecules. The formation of DNA supramolecules increased their stability against DNase compared to lss DNA, which was evaluated using FBS. Furthermore, DNA supramolecules induced three-times higher TNF-α release from RAW264.7 cells than lss-DNA alone. These results demonstrate that DNA supramolecules are efficient delivery carriers of CpG DNA to immune cells.


Subject(s)
Cytosine , Guanine , Animals , DNA/chemistry , Deoxyribonucleases , Hydrophobic and Hydrophilic Interactions , Mammals/genetics , Oligodeoxyribonucleotides/chemistry , Phosphates
3.
Acta Med Okayama ; 74(4): 327-334, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32843764

ABSTRACT

An increasing accumulation of microplastics and further degraded nanoplastics in our environment is suspected to have harmful effects on humans and animals. To clarify this problem, we tested the cytotoxicity of two types of plastic wrap on human cultured liver cells and mouse primary cultured liver cells. Alcohol extracts from plastic wrap, i.e., polyvinylidene chloride (PVDC), showed cytotoxic effects on the cells. Alcohol extracts of polyethylene (PE) wrap were not toxic. The commercially available PVDC wrap consists of vinylidene chloride, epoxidized soybean oil, epoxidized linseed oil as a stiffener and stabilizer; we sought to identify which component(s) are toxic. The epoxidized soybean oil and epoxidized linseed oil exerted strong cytotoxicity, but the plastic raw material itself, vinylidene chloride, did not. Our findings indicate that plastic wraps should be used with caution in order to prevent health risks.


Subject(s)
Plastics/chemistry , Polyvinyl Chloride/analogs & derivatives , Animals , Cell Line, Tumor , Humans , Mice , Plastics/adverse effects , Polyvinyl Chloride/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...