Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 124(14): 2741-2745, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32181653

ABSTRACT

This paper reports an energy-partition mechanism in dissociative excitation of alkali cyanide molecules, MCN (M = Rb, K, Na), to produce CN(B2Σ+) and M(ns2S) (n = 5, 4, and 3 for Rb, K, and Na, respectively) in collision with Kr metastable atoms, Krm(3P2,0). Both the vibrational and rotational distributions of CN(B2Σ+) produced in the reactions of RbCN and KCN were inverted as being peaked at v' = 1 and N' = 35, respectively, where v' and N' are the vibrational and the rotational quantum numbers of CN(B2Σ+), respectively. According to a state crossing model, it was derived that CN(B2Σ+) is produced by predissociation through a superexcited ion-pair state, CN-(31Σ+)·M+(1S), followed by an adiabatic transition to a repulsive state correlating to the dissociation limit of CN(B2Σ+) + M(ns2S). The inverted distributions are driven by structural changes during the excitation and the adiabatic transition. The maximum vibrational population at v' = 1 originates from a large Franck-Condon overlap between the vibrational wavefunctions of CN-(31Σ+) and CN(B2Σ+) at v' = 1. The rotational excitation of the CN(B2Σ+) product is explained with changing from a T-shape geometry of MCN in the ground state to a linear one in the superexcited ion-pair state.

2.
J Chem Phys ; 151(22): 224309, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31837657

ABSTRACT

Geometry of platinum clusters, PtN (N = 30-71), supported on a silicon substrate was investigated, aiming to control the geometry. The supported clusters were prepared by the impact of size-selected PtN + onto the substrate at a given collision energy (cluster-impact deposition), and their geometry was observed by means of a scanning-tunneling microscope. Even at the collision energy of 1 eV per Pt atom, sufficiently strong Pt-Si interaction between PtN (N = 30 and 45) and the Si substrate allows them to be supported as close-packed monatomic-layered Pt disks, while at N = 60, multilayered shapes exist besides the monatomic-layered shape, the fraction of which increases at N = 71. When the collision energy is increased, Si atoms located at the interface between the cluster and Si substrate dissolve into the cluster, and with further increase in the collision energy, the Pt-Si cluster is partially implanted into the substrate. The transition in the shape of the supported clusters with the collision energy and the cluster size was explained according to the deformation of the clusters and the substrate surface by the cluster impact. It is proposed that the momentum of PtN + per its cross section is a good index to control the geometry in the case of strong cluster-support interaction such as Pt and Si.

3.
Angew Chem Int Ed Engl ; 57(5): 1209-1213, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29239093

ABSTRACT

A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO→CO2 reaction (COox) is presented. Ag9 Pt2 and Ag9 Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. In situ GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O2 , and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

4.
Phys Chem Chem Phys ; 16(48): 26493-9, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25008563

ABSTRACT

Catalytic activity of thermal CO oxidation was studied for monatomic-layered platinum cluster disks, Pt30, bonded to the (111) surface of a silicon substrate. Temperature-programmed desorption (TPD) measurements were repeated for a given cluster sample with a systematic change in the reactant amounts supplied, and the peaks observed in the TPD spectra were deconvoluted so as to obtain probabilities of individual reactions. It was concluded that this system possesses an ability of low-temperature reductive activation of oxygen molecules, which is one of the critical steps in the CO oxidation. This high performance is explained in terms of negative charges accumulated at a sub-nano interface between the cluster disk and the silicon substrate surface as a result of their strong electronic interaction.

5.
J Chem Phys ; 124(1): 14701, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16409045

ABSTRACT

Tunneling spectra of size-selected single-layered platinum clusters (size range of 5-40) deposited on a silicon(111)-7x7 surface were measured individually at a temperature of 77 K by means of a scanning tunneling microscope (STM), and the local electronic densities of states of individual clusters were derived from their tunneling spectra measured by placing an STM tip on the clusters. In a bias-voltage (V(s)) range from -3 to 3 V, each tunneling spectrum exhibits several peaks assignable to electronic states associated with 5d states of a constituent platinum atom and an energy gap of 0.1-0.6 eV in the vicinity of V(s)=0. Even when platinum cluster ions having the same size were deposited on the silicon(111)-7x7 surface, the tunneling spectra and the energy gaps of the deposited clusters are not all the same but can be classified in shape into several different groups; this finding is consistent with the observation of the geometrical structures of platinum clusters on the silicon(111)-7x7 surface. The mean energy gap of approximately 0.4 eV drops to approximately 0.25 eV at the size of 20 and then decreases gradually as the size increases, consistent with our previous finding that the cluster diameter remains unchanged, but the number density of Pt atoms increases below the size of 20 while the diameter increases, but the density does not change above it. It is concluded that the mean energy gap tends to decrease gradually with the mean cluster diameter. The dependence of the mean energy gap on the mean Pt-Pt distance shows that the mean energy gap decreases sharply when the mean Pt-Pt distance exceeds that of a platinum metal (0.28 nm).

6.
J Chem Phys ; 123(12): 124709, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16392513

ABSTRACT

Uni-sized platinum clusters (size range of 5-40) on a silicon(111)-7 x 7 surface were prepared by depositing size-selected platinum cluster ions on the silicon surface at the collision energy of 1.5 eV per atom at room temperature. The surface thus prepared was observed by means of a scanning tunneling microscope (STM) at the temperature of 77 K under an ambient pressure less than 5 x 10(-9) Pa. The STM images observed at different cluster sizes revealed that (1) the clusters are flattened and stuck to the surface with a chemical-bond akin to platinum silicide, (2) every platinum atom occupies preferentially the most reactive sites distributed within a diameter of approximately 2 nm on the silicon surface at a cluster size up to 20, and above this size, the diameter of the cluster increases with the size, and (3) the sticking probability of an incoming cluster ion on the surface increases with the cluster size and reaches nearly unity at a size larger than 20.

7.
J Chem Phys ; 121(10): 4833-8, 2004 Sep 08.
Article in English | MEDLINE | ID: mdl-15332918

ABSTRACT

We investigated dissociation of X-(H2O)n (X = Cl, I, n = 13-31) by the impact onto a (La0.7Ce0.3)B6(100) surface at a collision energy Ecol of 1-5 eV per water molecule in a tandem time-of-flight mass spectrometer equipped with a translation-energy analyzer. The mechanism of the dissociation was elucidated on the basis of the measurements of the mass spectrum and the translational energies of the product anions, X-(H2O)m (m = 0-4), scattered from the surface. It was concluded that (1) the parent cluster anion impacted on the surface undergoes dissociation on the surface under quasiequilibrium with its characteristic time varying with Ecol and n, and (2) the total collision energy introduced is partitioned preferentially to the translational motions of the products on the surface and to the rotational, the vibrational, and the lattice vibrational motions (surface) in this order. The quasiequilibrium model is applicable, even at the collision energy as low as 1 eV, because the translational modes are found to be statistically distributed while the other modes are not much populated by dynamical and energetics limitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...