Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Senses ; 482023 01 01.
Article in English | MEDLINE | ID: mdl-36897610

ABSTRACT

Animals use sour taste to avoid spoiled food and to choose foods containing vitamins and minerals. To investigate the response to sour taste substances during vitamin C (ascorbic acid; AA) deficiency, we conducted behavioral, neural, anatomical, and molecular biological experiments with osteogenic disorder Shionogi/Shi Jcl-od/od rats, which lack the ability to synthesize AA. Rats had higher 3 mM citric acid and 10 mM AA preference scores when AA-deficient than when replete. Licking rates for sour taste solutions [AA, citric acid, acetic acid, tartaric acid, and HCl] were significantly increased during AA deficiency relative to pre- and postdeficiency. Chorda tympani nerve recordings were conducted to evaluate organic acid taste responses in the AA-deficient and replete rats. Nerve responses to citric acid, acetic acid, and tartaric acid were significantly diminished in AA-deficient rats relative to replete controls. There was no significant difference in the number of fungiform papillae taste buds per unit area in the AA-deficient rats relative to the replete rats. However, mRNA expression levels of Gnat3 (NM_173139.1), Trpm5 (NM_001191896.1), Tas1r1 (NM_053305.1), Car4 (NM_019174.3), and Gad1 (NM_017007.1) in fungiform papillae taste bud cells from AA-deficient rats were significantly lower than those in replete rats. Our data suggest that AA deficiency decreases avoidance of acids and reduces chorda tympani nerve responses to acids. AA deficiency downregulates some taste-related genes in fungiform papillae taste bud cells. However, the results also reveal that the mRNA expression of some putative sour taste receptors in fungiform papillae taste bud cells is not affected by AA deficiency.


Subject(s)
Ascorbic Acid Deficiency , Taste Buds , Rats , Animals , Chorda Tympani Nerve , Taste/physiology , Taste Buds/physiology , Ascorbic Acid/pharmacology , RNA, Messenger
2.
J Oral Biosci ; 64(1): 155-158, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34979250

ABSTRACT

Taste-signaling proteins, which are expressed throughout the digestive tract, are involved in regulating metabolism and immunity. This study aimed to determine if these genes are expressed and altered in jejunal tissues from patients with extreme obesity who received bariatric surgery. Reverse transcription polymerase chain reaction revealed that phospholipase C beta 2 and transient receptor potential channel M5 expression was downregulated in the jejunum of patients with a body mass index above 50, whereas gustducin expression remained unchanged. Our data suggest that taste-signaling dysregulation might contribute to obesity.


Subject(s)
TRPM Cation Channels , Taste Buds , Humans , Jejunum/surgery , Obesity/genetics , TRPM Cation Channels/metabolism , Taste/genetics , Taste Buds/metabolism
3.
J Oral Biosci ; 62(3): 267-271, 2020 09.
Article in English | MEDLINE | ID: mdl-32603778

ABSTRACT

OBJECTIVES: The aim of this behavioral study was to investigate the duration of a conditioned stimulus (CS-duration) necessary for rats to recognize the components of a binary taste mixture in a conditioned taste aversion (CTA) paradigm as well as the relationship between CS-duration and their spontaneous recovery. METHODS: The experimental rats were categorized under conditioned and control groups and further divided into three groups according to the CS-duration: 10, 30, and 60 s. As the test stimuli, a mixture of 100 mM sucrose (S) + 30 µM quinine hydrochloride (Q) and its components were used. RESULTS: On day 1 of the CTA test, the number of licks (NL) for S + Q and S in all conditioned groups was significantly lower than that of the control group presented with CS for 60 s (CON-60), which was the representative control group determined by the initial CTA test. For Q, there was no significant difference between NL of the CTA group presented with CS for 10 s and that of CON-60; however, NL in the other two CTA groups, i.e., CTA-30 and CTA-60, was significantly lower than that of CON-60. When the rats were presented with a shorter CS-duration, they showed spontaneous recovery earlier depending on the CS-duration. CONCLUSIONS: These results suggest that rats can recognize a binary taste mixture and its components using a CS-duration of more than 30 s and that spontaneous recovery from CTA learning depends on the CS- duration.


Subject(s)
Avoidance Learning , Taste , Animals , Conditioning, Classical , Conditioning, Operant , Conditioning, Psychological , Rats
4.
Chem Senses ; 44(6): 389-397, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31106807

ABSTRACT

To investigate the appetite for vitamin C (VC), we conducted behavioral and neural experiments using osteogenic disorder Shionogi/Shi Jcl-od/od (od/od) rats, which lack the ability to synthesize VC, and their wild-type controls osteogenic disorder Shionogi/Shi Jcl- +/+ (+/+) rats. In the behavioral study, rats were deprived of VC for 25 days and then received two-bottle preference tests with a choice between water and 10 mM VC. The preference for 10 mM VC solution of od/od rats was significantly greater than that of +/+ rats. In the neural study, the relative magnitudes of the whole chorda tympani nerve (CTN) responses to 100-1000 mM VC, 3-10 mM HCl, 100-1000 mM NaCl, and 20 mM quinine▪HCl in the VC-deficient rats were significantly smaller than those in the nondeficient ones. Further, we conducted additional behavioral experiments to investigate the appetite for sour and salty taste solutions of VC-deficient od/od rats. Preference scores for 3 mM citric acid increased in od/od rats after VC removal, compared with before, whereas preference scores for 100 and 150 mM NaCl were decreased in VC-deficient od/od rats. The preference for 300 mM NaCl was not changed. Hence, our results suggest that the reduction of the aversive taste of VC during VC deficiency may have involved the reduction of CTN responses to acids. Overall, our results indicate that VC-deficient rats ingest sufficient VC to relieve their deficiency and that VC deficiency causes changes in peripheral sensitivity to acids, but nongustatory factors may also affect VC intake and choice.


Subject(s)
Ascorbic Acid Deficiency/drug therapy , Ascorbic Acid/pharmacology , Behavior, Animal/drug effects , Bone Diseases/drug therapy , Chorda Tympani Nerve/drug effects , Animals , Ascorbic Acid/administration & dosage , Ascorbic Acid/chemistry , Dose-Response Relationship, Drug , Rats , Rats, Inbred Strains , Solutions
5.
Chem Senses ; 41(9): 795-801, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27624788

ABSTRACT

This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli.

6.
J Neurophysiol ; 104(2): 896-901, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20519578

ABSTRACT

Only some taste cells fire action potentials in response to sapid stimuli. Type II taste cells express many taste transduction molecules but lack well-elaborated synapses, bringing into question the functional significance of action potentials in these cells. We examined the dependence of adenosine triphosphate (ATP) transmitter release from taste cells on action potentials. To identify type II taste cells we used mice expressing a green fluorescence protein (GFP) transgene from the alpha-gustducin promoter. Action potentials were recorded by an electrode basolaterally attached to a single GFP-positive taste cell. We monitored ATP release from gustducin-expressing taste cells by collecting the electrode solution immediately after tastant-stimulated action potentials and using a luciferase assay to quantify ATP. Stimulation of gustducin-expressing taste cells with saccharin, quinine, or glutamate on the apical membrane increased ATP levels in the electrode solution; the amount of ATP depended on the firing rate. Increased spontaneous firing rates also induced ATP release from gustducin-expressing taste cells. ATP release from gustducin-expressing taste cells was depressed by tetrodotoxin and inhibited below the detection limit by carbenoxolone. Our data support the hypothesis that action potentials in taste cells responsive to sweet, bitter, or umami tastants enhance ATP release through pannexin 1, not connexin-based hemichannels.


Subject(s)
Adenosine Triphosphate/metabolism , Taste Buds/cytology , Taste Buds/physiology , Taste/physiology , Transducin/physiology , Action Potentials/drug effects , Animals , Benzamidines/pharmacology , Carbenoxolone/pharmacology , Dose-Response Relationship, Drug , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins/genetics , Mice , Mice, Transgenic , Quinine/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Glutamate/pharmacology , Sweetening Agents/pharmacology , Taste/drug effects , Taste Buds/drug effects , Tetrodotoxin/pharmacology , Transducin/genetics
7.
Proc Natl Acad Sci U S A ; 107(2): 935-9, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20080779

ABSTRACT

Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.


Subject(s)
Arachidonic Acids/pharmacology , Cannabinoid Receptor Modulators/pharmacology , Endocannabinoids , Polyunsaturated Alkamides/pharmacology , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Taste/physiology , Animals , Energy Intake , Energy Metabolism/drug effects , Genes, Reporter , Green Fluorescent Proteins/genetics , Mice , Mice, Knockout , Mice, Transgenic , Quinine/pharmacology , Receptor, Cannabinoid, CB1/deficiency , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/drug effects , Receptors, Leptin/deficiency , Sucrose/pharmacology , Taste/drug effects
8.
J Physiol ; 587(Pt 18): 4425-39, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19622604

ABSTRACT

Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.


Subject(s)
Differential Threshold/physiology , Sensory Thresholds/physiology , Taste Buds/cytology , Taste Buds/physiology , Taste Perception/physiology , Animals , Mice , Mice, Inbred C57BL , Taste
9.
Biol Pharm Bull ; 31(10): 1833-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18827337

ABSTRACT

L-Glutamate and 5'-ribonucleotides such as guanosine-5'-monophosphate (GMP) and inosine-5'-monophosphate (IMP) elicit a unique taste called 'umami' that is distinct from the tastes of sweet, salty, sour, and bitter. For umami, like sweet and bitter compounds, taste signaling is initiated by binding of tastants to G-protein-coupled receptors (GPCR) in taste bud cells. To date, several GPCRs for umami compounds have been identified in taste cells, including the heterodimer T1R1/T1R3, and truncated type 1 and 4 metabotropic glutamate receptors missing most of the N-terminal extracellular domain (taste-mGluR4 and truncated-mGluR1). Apparently contradictory data in T1R3 knock-out (KO) mouse models have been reported. One study showed that behavioral preference and taste nerve responses to umami stimuli in T1R3-KO mice were totally abolished, suggesting that T1R1/T1R3 is a sole receptor for umami taste. The other reported reduced but not abolished responses to umami in T1R3-KO mice, suggesting existence of multiple receptors for umami taste. In this paper, we summarized the data from recent studies that further addressed this issue by using different experimental techniques. Some of the studies provided additional evidence for the existence of umami receptor systems mediated by mGluR1 and mGluR4 in addition to T1R1/T1R3. It is proposed that the signal mediated by the pathway involving T1R1/T1R3 may play a different role from that derived from the mGluRs. The former occurs mainly in the anterior tongue, and plays a major role in preference behavior, whereas the latter occurs mainly in the posterior tongue and contributes to behavioral discrimination between umami and other taste compounds.


Subject(s)
Glutamic Acid/metabolism , Receptors, Glutamate/physiology , Taste Buds/physiology , Taste/physiology , Animals , Excitatory Amino Acid Agonists/pharmacology , Food Preferences/drug effects , Food Preferences/physiology , Humans , Receptors, Glutamate/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Sodium Glutamate/pharmacology , Tongue/innervation , Tongue/physiology
10.
Biochem Biophys Res Commun ; 367(2): 356-63, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18174025

ABSTRACT

Gurmarin (Gur) is a peptide that selectively suppresses sweet taste responses in rodents. The inhibitory effect of Gur differs among tongue regions and mouse strains. Recent studies demonstrated that co-expression levels of genes controlling sweet receptors (T1r2/T1r3 heterodimer) versus Galpha-protein, gustducin, are much lower in Gur-insensitive posterior circumvallate papillae than in Gur-sensitive anterior fungiform papillae. Here, we investigated the potential link of Gur-sensitivity with the co-expression for T1r2/T1r3 receptors and gustducin by comparing those of taste tissues of Gur-sensitive (B6, dpa congenic strains) and Gur-weakly-sensitive (BALB) strains. The results indicated that co-expression ratios among T1r2, T1r3, and gustducin in the fungiform papillae were significantly lower in Gur-weakly-sensitive BALB mice than in Gur-sensitive B6 and dpa congenic mice. This linkage between Gur-sensitivity and co-expression for T1r2/T1r3 receptors versus gustducin suggests that gustducin may be a key molecule involved in the pathway for Gur-sensitive sweet responses.


Subject(s)
Plant Proteins/administration & dosage , Taste/physiology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 3/metabolism , Tongue/physiology , Transducin/metabolism , Animals , Dose-Response Relationship, Drug , Female , Gene Expression/drug effects , Gene Expression/physiology , Male , Mice , Mice, Inbred C57BL , Multigene Family/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Taste/drug effects , Tongue/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...